February  2016, 10(1): 131-150. doi: 10.3934/amc.2016.10.131

Complementary dual codes for counter-measures to side-channel attacks

1. 

LAGA, UMR 7539, CNRS, University of Paris VIII and University of Paris XIII, Department of Mathematics, 2 rue de la liberte, 93 526 Saint-Denis Cedex, France

2. 

TELECOM-ParisTech, Crypto Group | Paris-Saclay University | CNRS LTCI, 37/39 rue Dareau, 75 634 Paris Cedex 13, France

Received  December 2014 Revised  September 2015 Published  March 2016

We recall why linear codes with complementary duals (LCD codes) play a role in counter-measures to passive and active side-channel analyses on embedded cryptosystems. The rate and the minimum distance of such LCD codes must be as large as possible. We recall the known primary construction of such codes with cyclic codes, and investigate other constructions, with expanded Reed-Solomon codes and generalized residue codes, for which we study the idempotents. These constructions do not allow to reach all the desired parameters. We study then those secondary constructions which preserve the LCD property, and we characterize conditions under which codes obtained by direct sum, direct product, puncturing, shortening, extending codes, or obtained by the Plotkin sum, can be LCD.
Citation: Claude Carlet, Sylvain Guilley. Complementary dual codes for counter-measures to side-channel attacks. Advances in Mathematics of Communications, 2016, 10 (1) : 131-150. doi: 10.3934/amc.2016.10.131
References:
[1]

S. Barnett, Matrices: Methods and Applications,, Clarendon Press, (1990).   Google Scholar

[2]

K. Betsumiya and M. Harada, Binary optimal odd formally self-dual codes,, Des. Codes Crypt., 23 (2001), 11.  doi: 10.1023/A:1011203416769.  Google Scholar

[3]

S. Bhasin, J.-L. Danger, S. Guilley and Z. Najm, A low-entropy first-degree secure provable masking scheme for resource-constrained devices,, in Workshop Embedded Syst. Sec., (2013).  doi: 10.1145/2527317.2527324.  Google Scholar

[4]

S. Bhasin, J.-L. Danger, S. Guilley, Z. Najm and X. T. Ngo, Linear complementary dual code improvement to strengthen encoded circuit against hardware trojan horses,, in 2015 IEEE Int. Symp. Hardware-Oriented Sec. Trust, (2015), 82.  doi: 10.1109/HST.2015.7140242.  Google Scholar

[5]

S. Bhasin, J.-L. Danger, S. Guilley, T. Ngo and L. Sauvage, Hardware trojan horses in cryptographic IP cores,, in FDTC, (2013), 15.   Google Scholar

[6]

S. Bhasin, J.-L. Danger, X. T. Ngo, S. Guilley and Z. Najm, Encoding the state of integrated circuits: a proactive and reactive protection against hardware trojans horses,, in Proc. 9th Workshop Embedded Syst. Sec., (2014).  doi: 10.1145/2668322.2668329.  Google Scholar

[7]

A. Bojilov, A. J. van Zanten and S. M. Dodunekov, Minimal distances in generalized residue codes,, in Proc. 12th Int. Workshop Algebr. Combin. Coding Theory, (2010).   Google Scholar

[8]

J. Bringer, C. Carlet, H. Chabanne, S. Guilley and H. Maghrebi, Orthogonal direct sum masking - a smartcard friendly computation paradigm in a code, with builtin protection against side-channel and fault attacks,, in WISTP, (2014), 40.   Google Scholar

[9]

C. Carlet, Boolean functions for cryptography and error correcting codes,, in Chapter of the Monography Boolean Models and Methods (eds. Y. Crama and P. Hammer), (2010), 257.   Google Scholar

[10]

C. Carlet, A. Daif, J.-L. Danger, S. Guilley, Z. Najm, X. T. Ngo and C. Tavernier, Optimized linear complementary codes implementation for hardware trojan prevention,, in 22nd Europ. Conf. Circuit Theory Des., (2015).   Google Scholar

[11]

C. Carlet, P. Gaborit, J.-L. Kim and P. Solé, A new class of codes for Boolean masking of cryptographic computations,, IEEE Trans. Inf. Theory, 58 (2012), 6000.  doi: 10.1109/TIT.2012.2200651.  Google Scholar

[12]

B. Chen, H. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $2l^mp^n$,, preprint, ().   Google Scholar

[13]

J. Etesami, F. Hu and W. Henkel, LCD codes and iterative decoding by projections, a first step towards an intuitive description of iterative decoding,, in GLOBECOM, (2011), 1.   Google Scholar

[14]

M. Grassl, Bounds on the minimum distance of linear codes and quantum codes,, available online at , ().   Google Scholar

[15]

V. Grosso, F.-X. Standaert and E. Prouff, Low entropy masking schemes, revisited,, in CARDIS (eds. A. Francillon and P. Rohatgi), (2013), 33.   Google Scholar

[16]

W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes,, Cambridge University Press, (2003).  doi: 10.1017/CBO9780511807077.  Google Scholar

[17]

W. B. V. Kandasamy, F. Smarandache, R. Sujatha and R. S. R. Durai, Erasure Techniques in MRD Codes,, Infinite Study, (2012).   Google Scholar

[18]

S. Ling and C. Xing, Polyadic codes revisited,, IEEE Trans. Inf. Theory, 50 (2004), 200.  doi: 10.1109/TIT.2003.821986.  Google Scholar

[19]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,, Elsevier, (1977).   Google Scholar

[20]

J. L. Massey, Linear codes with complementary duals,, Discrete Math., 106/107 (1992), 337.  doi: 10.1016/0012-365X(92)90563-U.  Google Scholar

[21]

G. L. Mullen and D. Panario, Handbook of Finite Fields,, Chapman and Hall/CRC, (2013).  doi: 10.1201/b15006.  Google Scholar

[22]

E. Prouff, M. Rivain and R. Bevan, Statistical Analysis of Second Order Differential Power Analysis,, IEEE Trans. Computers, 58 (2009), 799.  doi: 10.1109/TC.2009.15.  Google Scholar

[23]

N. Sendrier, Linear codes with complementary duals meet the Gilbert-Varshamov bound,, Discrete Math., 285 (2004), 345.  doi: 10.1016/j.disc.2004.05.005.  Google Scholar

[24]

A. Sharma, G. K. Bakshi and M. Raka, Polyadic codes of prime power length,, Finite Fields Appl., 13 (2007), 1071.  doi: 10.1016/j.ffa.2006.12.006.  Google Scholar

[25]

J. H. van Lint and F. J. MacWilliams, Generalized quadratic residue codes,, IEEE Trans. Inf. Theory, 24 (1978), 730.  doi: 10.1109/TIT.1978.1055965.  Google Scholar

[26]

H. N. Ward, Quadratic residue codes and divisibility,, in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), (1998), 827.   Google Scholar

[27]

X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary dual,, Discrete Math., 126 (1994), 391.  doi: 10.1016/0012-365X(94)90283-6.  Google Scholar

show all references

References:
[1]

S. Barnett, Matrices: Methods and Applications,, Clarendon Press, (1990).   Google Scholar

[2]

K. Betsumiya and M. Harada, Binary optimal odd formally self-dual codes,, Des. Codes Crypt., 23 (2001), 11.  doi: 10.1023/A:1011203416769.  Google Scholar

[3]

S. Bhasin, J.-L. Danger, S. Guilley and Z. Najm, A low-entropy first-degree secure provable masking scheme for resource-constrained devices,, in Workshop Embedded Syst. Sec., (2013).  doi: 10.1145/2527317.2527324.  Google Scholar

[4]

S. Bhasin, J.-L. Danger, S. Guilley, Z. Najm and X. T. Ngo, Linear complementary dual code improvement to strengthen encoded circuit against hardware trojan horses,, in 2015 IEEE Int. Symp. Hardware-Oriented Sec. Trust, (2015), 82.  doi: 10.1109/HST.2015.7140242.  Google Scholar

[5]

S. Bhasin, J.-L. Danger, S. Guilley, T. Ngo and L. Sauvage, Hardware trojan horses in cryptographic IP cores,, in FDTC, (2013), 15.   Google Scholar

[6]

S. Bhasin, J.-L. Danger, X. T. Ngo, S. Guilley and Z. Najm, Encoding the state of integrated circuits: a proactive and reactive protection against hardware trojans horses,, in Proc. 9th Workshop Embedded Syst. Sec., (2014).  doi: 10.1145/2668322.2668329.  Google Scholar

[7]

A. Bojilov, A. J. van Zanten and S. M. Dodunekov, Minimal distances in generalized residue codes,, in Proc. 12th Int. Workshop Algebr. Combin. Coding Theory, (2010).   Google Scholar

[8]

J. Bringer, C. Carlet, H. Chabanne, S. Guilley and H. Maghrebi, Orthogonal direct sum masking - a smartcard friendly computation paradigm in a code, with builtin protection against side-channel and fault attacks,, in WISTP, (2014), 40.   Google Scholar

[9]

C. Carlet, Boolean functions for cryptography and error correcting codes,, in Chapter of the Monography Boolean Models and Methods (eds. Y. Crama and P. Hammer), (2010), 257.   Google Scholar

[10]

C. Carlet, A. Daif, J.-L. Danger, S. Guilley, Z. Najm, X. T. Ngo and C. Tavernier, Optimized linear complementary codes implementation for hardware trojan prevention,, in 22nd Europ. Conf. Circuit Theory Des., (2015).   Google Scholar

[11]

C. Carlet, P. Gaborit, J.-L. Kim and P. Solé, A new class of codes for Boolean masking of cryptographic computations,, IEEE Trans. Inf. Theory, 58 (2012), 6000.  doi: 10.1109/TIT.2012.2200651.  Google Scholar

[12]

B. Chen, H. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $2l^mp^n$,, preprint, ().   Google Scholar

[13]

J. Etesami, F. Hu and W. Henkel, LCD codes and iterative decoding by projections, a first step towards an intuitive description of iterative decoding,, in GLOBECOM, (2011), 1.   Google Scholar

[14]

M. Grassl, Bounds on the minimum distance of linear codes and quantum codes,, available online at , ().   Google Scholar

[15]

V. Grosso, F.-X. Standaert and E. Prouff, Low entropy masking schemes, revisited,, in CARDIS (eds. A. Francillon and P. Rohatgi), (2013), 33.   Google Scholar

[16]

W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes,, Cambridge University Press, (2003).  doi: 10.1017/CBO9780511807077.  Google Scholar

[17]

W. B. V. Kandasamy, F. Smarandache, R. Sujatha and R. S. R. Durai, Erasure Techniques in MRD Codes,, Infinite Study, (2012).   Google Scholar

[18]

S. Ling and C. Xing, Polyadic codes revisited,, IEEE Trans. Inf. Theory, 50 (2004), 200.  doi: 10.1109/TIT.2003.821986.  Google Scholar

[19]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,, Elsevier, (1977).   Google Scholar

[20]

J. L. Massey, Linear codes with complementary duals,, Discrete Math., 106/107 (1992), 337.  doi: 10.1016/0012-365X(92)90563-U.  Google Scholar

[21]

G. L. Mullen and D. Panario, Handbook of Finite Fields,, Chapman and Hall/CRC, (2013).  doi: 10.1201/b15006.  Google Scholar

[22]

E. Prouff, M. Rivain and R. Bevan, Statistical Analysis of Second Order Differential Power Analysis,, IEEE Trans. Computers, 58 (2009), 799.  doi: 10.1109/TC.2009.15.  Google Scholar

[23]

N. Sendrier, Linear codes with complementary duals meet the Gilbert-Varshamov bound,, Discrete Math., 285 (2004), 345.  doi: 10.1016/j.disc.2004.05.005.  Google Scholar

[24]

A. Sharma, G. K. Bakshi and M. Raka, Polyadic codes of prime power length,, Finite Fields Appl., 13 (2007), 1071.  doi: 10.1016/j.ffa.2006.12.006.  Google Scholar

[25]

J. H. van Lint and F. J. MacWilliams, Generalized quadratic residue codes,, IEEE Trans. Inf. Theory, 24 (1978), 730.  doi: 10.1109/TIT.1978.1055965.  Google Scholar

[26]

H. N. Ward, Quadratic residue codes and divisibility,, in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), (1998), 827.   Google Scholar

[27]

X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary dual,, Discrete Math., 126 (1994), 391.  doi: 10.1016/0012-365X(94)90283-6.  Google Scholar

[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[3]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[4]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[5]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[6]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[7]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[8]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[9]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[10]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[11]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[12]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[13]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[14]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[17]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (110)
  • HTML views (0)
  • Cited by (37)

Other articles
by authors

[Back to Top]