-
Previous Article
Further results on fibre products of Kummer covers and curves with many points over finite fields
- AMC Home
- This Issue
-
Next Article
On applications of orbit codes to storage
Complementary dual codes for counter-measures to side-channel attacks
1. | LAGA, UMR 7539, CNRS, University of Paris VIII and University of Paris XIII, Department of Mathematics, 2 rue de la liberte, 93 526 Saint-Denis Cedex, France |
2. | TELECOM-ParisTech, Crypto Group | Paris-Saclay University | CNRS LTCI, 37/39 rue Dareau, 75 634 Paris Cedex 13, France |
References:
[1] |
S. Barnett, Matrices: Methods and Applications,, Clarendon Press, (1990).
|
[2] |
K. Betsumiya and M. Harada, Binary optimal odd formally self-dual codes,, Des. Codes Crypt., 23 (2001), 11.
doi: 10.1023/A:1011203416769. |
[3] |
S. Bhasin, J.-L. Danger, S. Guilley and Z. Najm, A low-entropy first-degree secure provable masking scheme for resource-constrained devices,, in Workshop Embedded Syst. Sec., (2013).
doi: 10.1145/2527317.2527324. |
[4] |
S. Bhasin, J.-L. Danger, S. Guilley, Z. Najm and X. T. Ngo, Linear complementary dual code improvement to strengthen encoded circuit against hardware trojan horses,, in 2015 IEEE Int. Symp. Hardware-Oriented Sec. Trust, (2015), 82.
doi: 10.1109/HST.2015.7140242. |
[5] |
S. Bhasin, J.-L. Danger, S. Guilley, T. Ngo and L. Sauvage, Hardware trojan horses in cryptographic IP cores,, in FDTC, (2013), 15. Google Scholar |
[6] |
S. Bhasin, J.-L. Danger, X. T. Ngo, S. Guilley and Z. Najm, Encoding the state of integrated circuits: a proactive and reactive protection against hardware trojans horses,, in Proc. 9th Workshop Embedded Syst. Sec., (2014).
doi: 10.1145/2668322.2668329. |
[7] |
A. Bojilov, A. J. van Zanten and S. M. Dodunekov, Minimal distances in generalized residue codes,, in Proc. 12th Int. Workshop Algebr. Combin. Coding Theory, (2010). Google Scholar |
[8] |
J. Bringer, C. Carlet, H. Chabanne, S. Guilley and H. Maghrebi, Orthogonal direct sum masking - a smartcard friendly computation paradigm in a code, with builtin protection against side-channel and fault attacks,, in WISTP, (2014), 40. Google Scholar |
[9] |
C. Carlet, Boolean functions for cryptography and error correcting codes,, in Chapter of the Monography Boolean Models and Methods (eds. Y. Crama and P. Hammer), (2010), 257. Google Scholar |
[10] |
C. Carlet, A. Daif, J.-L. Danger, S. Guilley, Z. Najm, X. T. Ngo and C. Tavernier, Optimized linear complementary codes implementation for hardware trojan prevention,, in 22nd Europ. Conf. Circuit Theory Des., (2015). Google Scholar |
[11] |
C. Carlet, P. Gaborit, J.-L. Kim and P. Solé, A new class of codes for Boolean masking of cryptographic computations,, IEEE Trans. Inf. Theory, 58 (2012), 6000.
doi: 10.1109/TIT.2012.2200651. |
[12] |
B. Chen, H. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $2l^mp^n$,, preprint, (). Google Scholar |
[13] |
J. Etesami, F. Hu and W. Henkel, LCD codes and iterative decoding by projections, a first step towards an intuitive description of iterative decoding,, in GLOBECOM, (2011), 1. Google Scholar |
[14] |
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes,, available online at , (). Google Scholar |
[15] |
V. Grosso, F.-X. Standaert and E. Prouff, Low entropy masking schemes, revisited,, in CARDIS (eds. A. Francillon and P. Rohatgi), (2013), 33. Google Scholar |
[16] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes,, Cambridge University Press, (2003).
doi: 10.1017/CBO9780511807077. |
[17] |
W. B. V. Kandasamy, F. Smarandache, R. Sujatha and R. S. R. Durai, Erasure Techniques in MRD Codes,, Infinite Study, (2012). Google Scholar |
[18] |
S. Ling and C. Xing, Polyadic codes revisited,, IEEE Trans. Inf. Theory, 50 (2004), 200.
doi: 10.1109/TIT.2003.821986. |
[19] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,, Elsevier, (1977). Google Scholar |
[20] |
J. L. Massey, Linear codes with complementary duals,, Discrete Math., 106/107 (1992), 337.
doi: 10.1016/0012-365X(92)90563-U. |
[21] |
G. L. Mullen and D. Panario, Handbook of Finite Fields,, Chapman and Hall/CRC, (2013).
doi: 10.1201/b15006. |
[22] |
E. Prouff, M. Rivain and R. Bevan, Statistical Analysis of Second Order Differential Power Analysis,, IEEE Trans. Computers, 58 (2009), 799.
doi: 10.1109/TC.2009.15. |
[23] |
N. Sendrier, Linear codes with complementary duals meet the Gilbert-Varshamov bound,, Discrete Math., 285 (2004), 345.
doi: 10.1016/j.disc.2004.05.005. |
[24] |
A. Sharma, G. K. Bakshi and M. Raka, Polyadic codes of prime power length,, Finite Fields Appl., 13 (2007), 1071.
doi: 10.1016/j.ffa.2006.12.006. |
[25] |
J. H. van Lint and F. J. MacWilliams, Generalized quadratic residue codes,, IEEE Trans. Inf. Theory, 24 (1978), 730.
doi: 10.1109/TIT.1978.1055965. |
[26] |
H. N. Ward, Quadratic residue codes and divisibility,, in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), (1998), 827.
|
[27] |
X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary dual,, Discrete Math., 126 (1994), 391.
doi: 10.1016/0012-365X(94)90283-6. |
show all references
References:
[1] |
S. Barnett, Matrices: Methods and Applications,, Clarendon Press, (1990).
|
[2] |
K. Betsumiya and M. Harada, Binary optimal odd formally self-dual codes,, Des. Codes Crypt., 23 (2001), 11.
doi: 10.1023/A:1011203416769. |
[3] |
S. Bhasin, J.-L. Danger, S. Guilley and Z. Najm, A low-entropy first-degree secure provable masking scheme for resource-constrained devices,, in Workshop Embedded Syst. Sec., (2013).
doi: 10.1145/2527317.2527324. |
[4] |
S. Bhasin, J.-L. Danger, S. Guilley, Z. Najm and X. T. Ngo, Linear complementary dual code improvement to strengthen encoded circuit against hardware trojan horses,, in 2015 IEEE Int. Symp. Hardware-Oriented Sec. Trust, (2015), 82.
doi: 10.1109/HST.2015.7140242. |
[5] |
S. Bhasin, J.-L. Danger, S. Guilley, T. Ngo and L. Sauvage, Hardware trojan horses in cryptographic IP cores,, in FDTC, (2013), 15. Google Scholar |
[6] |
S. Bhasin, J.-L. Danger, X. T. Ngo, S. Guilley and Z. Najm, Encoding the state of integrated circuits: a proactive and reactive protection against hardware trojans horses,, in Proc. 9th Workshop Embedded Syst. Sec., (2014).
doi: 10.1145/2668322.2668329. |
[7] |
A. Bojilov, A. J. van Zanten and S. M. Dodunekov, Minimal distances in generalized residue codes,, in Proc. 12th Int. Workshop Algebr. Combin. Coding Theory, (2010). Google Scholar |
[8] |
J. Bringer, C. Carlet, H. Chabanne, S. Guilley and H. Maghrebi, Orthogonal direct sum masking - a smartcard friendly computation paradigm in a code, with builtin protection against side-channel and fault attacks,, in WISTP, (2014), 40. Google Scholar |
[9] |
C. Carlet, Boolean functions for cryptography and error correcting codes,, in Chapter of the Monography Boolean Models and Methods (eds. Y. Crama and P. Hammer), (2010), 257. Google Scholar |
[10] |
C. Carlet, A. Daif, J.-L. Danger, S. Guilley, Z. Najm, X. T. Ngo and C. Tavernier, Optimized linear complementary codes implementation for hardware trojan prevention,, in 22nd Europ. Conf. Circuit Theory Des., (2015). Google Scholar |
[11] |
C. Carlet, P. Gaborit, J.-L. Kim and P. Solé, A new class of codes for Boolean masking of cryptographic computations,, IEEE Trans. Inf. Theory, 58 (2012), 6000.
doi: 10.1109/TIT.2012.2200651. |
[12] |
B. Chen, H. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $2l^mp^n$,, preprint, (). Google Scholar |
[13] |
J. Etesami, F. Hu and W. Henkel, LCD codes and iterative decoding by projections, a first step towards an intuitive description of iterative decoding,, in GLOBECOM, (2011), 1. Google Scholar |
[14] |
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes,, available online at , (). Google Scholar |
[15] |
V. Grosso, F.-X. Standaert and E. Prouff, Low entropy masking schemes, revisited,, in CARDIS (eds. A. Francillon and P. Rohatgi), (2013), 33. Google Scholar |
[16] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes,, Cambridge University Press, (2003).
doi: 10.1017/CBO9780511807077. |
[17] |
W. B. V. Kandasamy, F. Smarandache, R. Sujatha and R. S. R. Durai, Erasure Techniques in MRD Codes,, Infinite Study, (2012). Google Scholar |
[18] |
S. Ling and C. Xing, Polyadic codes revisited,, IEEE Trans. Inf. Theory, 50 (2004), 200.
doi: 10.1109/TIT.2003.821986. |
[19] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,, Elsevier, (1977). Google Scholar |
[20] |
J. L. Massey, Linear codes with complementary duals,, Discrete Math., 106/107 (1992), 337.
doi: 10.1016/0012-365X(92)90563-U. |
[21] |
G. L. Mullen and D. Panario, Handbook of Finite Fields,, Chapman and Hall/CRC, (2013).
doi: 10.1201/b15006. |
[22] |
E. Prouff, M. Rivain and R. Bevan, Statistical Analysis of Second Order Differential Power Analysis,, IEEE Trans. Computers, 58 (2009), 799.
doi: 10.1109/TC.2009.15. |
[23] |
N. Sendrier, Linear codes with complementary duals meet the Gilbert-Varshamov bound,, Discrete Math., 285 (2004), 345.
doi: 10.1016/j.disc.2004.05.005. |
[24] |
A. Sharma, G. K. Bakshi and M. Raka, Polyadic codes of prime power length,, Finite Fields Appl., 13 (2007), 1071.
doi: 10.1016/j.ffa.2006.12.006. |
[25] |
J. H. van Lint and F. J. MacWilliams, Generalized quadratic residue codes,, IEEE Trans. Inf. Theory, 24 (1978), 730.
doi: 10.1109/TIT.1978.1055965. |
[26] |
H. N. Ward, Quadratic residue codes and divisibility,, in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), (1998), 827.
|
[27] |
X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary dual,, Discrete Math., 126 (1994), 391.
doi: 10.1016/0012-365X(94)90283-6. |
[1] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[2] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[3] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[4] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[5] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
[6] |
Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020135 |
[7] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[8] |
Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024 |
[9] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[10] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446 |
[11] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[12] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[13] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[14] |
Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2020056 |
[15] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[16] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[17] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[18] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031 |
[19] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[20] |
Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021038 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]