\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Composition codes

Abstract Related Papers Cited by
  • In this paper we introduce a special class of 2D convolutional codes, called composition codes, which admit encoders $G(d_1,d_2)$ that can be decomposed as the product of two 1D encoders, i.e., $ G(d_1,d_2)=G_2(d_2)G_1(d_1)$. Taking into account this decomposition, we obtain syndrome formers of the code directly from $G_1(d_1)$ and $ G_2(d_2)$, in case $G_1(d_1)$ and $ G_2(d_2)$ are right prime. Moreover we consider 2D state-space realizations by means of a separable Roesser model of the encoders and syndrome formers of a composition code and we investigate the minimality of such realizations. In particular, we obtain minimal realizations for composition codes which admit an encoder $G(d_1,d_2)=G_2(d_2)G_1(d_1)$ with $G_2(d_2)$ a systematic 1D encoder. Finally, we investigate the minimality of 2D separable Roesser state-space realizations for syndrome formers of these codes.
    Mathematics Subject Classification: Primary: 94B10, 93C35; Secondary: 93B25, 93B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Attasi, Systèmes linéaires homogènes à deux indices, in Rapport Laboria, 1973.

    [2]

    E. Fornasini and G. Marchesini, Algebraic realization theory of two-dimensional filters, in Variable Structure Systems with Application to Economics and Biology (eds. A. Ruberti and R. Mohler), Springer, 1975, 64-82.

    [3]

    E. Fornasini and R. Pinto, Matrix fraction descriptions in convolutional coding, Linear Algebra Appl., 392 (2004), 119-158.doi: 10.1016/j.laa.2004.06.007.

    [4]

    E. Fornasini and M. E. Valcher, Algebraic aspects of two-dimensional convolutional codes, IEEE Trans. Inf. Theory, 40 (1994), 1068-1082.doi: 10.1109/18.335967.

    [5]

    G. Forney, Convolutional Codes I: Algebraic structure, IEEE Trans. Inf. Theory, 16 (1970), 720-738. Correction, Ibid., 17 (1971), 360.

    [6]

    G. Forney, Structural analysis of convolutional codes via dual codes, IEEE Trans. Inf. Theory, 19 (1973), 512-518.

    [7]

    B. Levy, 2D Polynomial and Rational Matrices, and their Applications for the Modeling of 2-D Dynamical Systems, Ph.D thesis, Stanford University, USA, 1981.

    [8]

    T. Lin, M. Kawamata and T. Higuchi, Decomposition of 2-D separable-denominator systems: Existence, uniqueness, and applications, IEEE Trans. Circ. Syst., 34 (1987), 292-296.doi: 10.1109/TCS.1987.1086219.

    [9]

    T. Pinho, Minimal State-Space Realizations of 2D Convolutional Codes, Ph.D thesis, Univ. Aveiro, Portugal, 2014.

    [10]

    T. Pinho, R. Pinto and P. Rocha, Realization of 2D convolutional codes of rate $\frac1n$ by separable Roesser models, Des. Codes Crypt., 70 (2014), 241-250.doi: 10.1007/s10623-012-9768-1.

    [11]

    P. Rocha, Representation of noncausal 2D systems, in New Trends in Systems Theory, Birkhäuser, 1991, 630-635.

    [12]

    R. P. Roesser, A Discrete State-Space Model for Linear Image Processing, IEEE Trans. Automat. Control, 20 (1975), 1-10.

    [13]

    M. E. Valcher and E. Fornasini, On 2D finite support convolutional codes, Multidim. Syst. Signal Proc., 5 (1994), 231-243.doi: 10.1007/BF00980707.

    [14]

    P. A. Weiner, Multidimensional Convolutional Codes, Ph.D thesis, Univ. Notre Dame, USA, 1998.

    [15]

    J. C. Willems, Models for dynamics, in Dynamics Reported (eds. U. Kirchgraber and H.O. Walther), John Wiley Sons Ltd., 1989, 171-269.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(206) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return