February  2016, 10(1): 179-193. doi: 10.3934/amc.2016.10.179

Decoding of $2$D convolutional codes over an erasure channel

1. 

Departament de Matemàtiques, Universitat d'Alacant, Ap. Correus 99, E-03080, Alacant

2. 

CIDMA - Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal, Portugal, Portugal

Received  December 2014 Revised  September 2015 Published  March 2016

In this paper we address the problem of decoding $2$D convolutional codes over an erasure channel. To this end we introduce the notion of neighbors around a set of erasures which can be considered an analogue of the notion of sliding window in the context of $1$D convolutional codes. The main idea is to reduce the decoding problem of $2$D convolutional codes to a problem of decoding a set of associated $1$D convolutional codes. We first show how to recover sets of erasures that are distributed on vertical, horizontal and diagonal lines. Finally we outline some ideas to treat any set of erasures distributed randomly on the $2$D plane.
Citation: Joan-Josep Climent, Diego Napp, Raquel Pinto, Rita Simões. Decoding of $2$D convolutional codes over an erasure channel. Advances in Mathematics of Communications, 2016, 10 (1) : 179-193. doi: 10.3934/amc.2016.10.179
References:
[1]

P. Almeida, D. Napp and R. Pinto, A new class of superregular matrices and MDP convolutional codes,, Linear Algebra Appl., 439 (2013), 2145.  doi: 10.1016/j.laa.2013.06.013.  Google Scholar

[2]

M. Arai, A. Yamamoto, A. Yamaguchi, S. Fukumoto and K. Iwasaki, Analysis of using convolutional codes to recover packet losses over burst erasure channels,, in Proc. 2001 Pacific Rim Int. Symp. Depend. Comp., (2001), 258.  doi: 10.1109/PRDC.2001.992706.  Google Scholar

[3]

J. J. Climent, D. Napp, C. Perea and R. Pinto, A construction of MDS 2D convolutional codes of rate 1/n based on superregular matrices,, Linear Algebra Appl., 437 (2012), 766.  doi: 10.1016/j.laa.2012.02.032.  Google Scholar

[4]

E. Fornasini and M. E. Valcher, Algebraic aspects of two-dimensional convolutional codes,, IEEE Trans. Inf. Theory, 40 (1994), 1068.  doi: 10.1109/18.335967.  Google Scholar

[5]

E. Fornasini and M. E. Valcher, On 2D finite support convolutional codes: an algebraic approach,, Multidim. Syst. Signal Proc., 5 (1994), 231.  doi: 10.1007/BF00980707.  Google Scholar

[6]

E. Fornasini and M. E. Valcher, nD polynomial matrices with applications to multidimensional signal analysis,, Multidim. Syst. Signal Proc., 8 (1997), 387.  doi: 10.1023/A:1008256224288.  Google Scholar

[7]

H. Gluesing-Luerssen, J. Rosenthal and R. Smarandache, Strongly MDS convolutional codes,, IEEE Trans. Inf. Theory, 52 (2006), 584.  doi: 10.1109/TIT.2005.862100.  Google Scholar

[8]

H. Gluesing-Luerssen, J. Rosenthal and P. Weiner, Duality between multidimensional convolutional codes and systems,, in Advances in Mathematical Systems Theory (eds. F. Colonius, (2000), 135.  doi: 10.1007/978-1-4612-0179-3_8.  Google Scholar

[9]

R. Hutchinson, The existence of strongly MDS convolutional codes,, SIAM J. Control Opt., 47 (2008), 2812.  doi: 10.1137/050638977.  Google Scholar

[10]

R. Hutchinson, J. Rosenthal and R. Smarandache, Convolutional codes with maximum distance profile,, Syst. Control Lett., 54 (2005), 53.  doi: 10.1016/j.sysconle.2004.06.005.  Google Scholar

[11]

R. Hutchinson, R. Smarandache and J. Trumpf, On superregular matrices and MDP convolutional codes,, Linear Algebra Appl., 428 (2008), 2585.  doi: 10.1016/j.laa.2008.02.011.  Google Scholar

[12]

P. Jangisarakul and C. Charoenlarpnopparut, Algebraic decoder of multidimensional convolutional code: Constructive algorithms for determining syndrome decoder and decoder matrix based on Gröbner basis,, Multidim. Syst. Signal Proc., 22 (2011), 67.  doi: 10.1007/s11045-010-0139-7.  Google Scholar

[13]

D. Napp, C. Perea and R. Pinto, Input-state-output representations and constructions of finite support 2D convolutional codes,, Adv. Math. Commun., 4 (2010), 533.  doi: 10.3934/amc.2010.4.533.  Google Scholar

[14]

V. Tomás, Complete-MDP Convolutional Codes over the Erasure Channel, Ph.D thesis,, Univ. Alicante, (2010).   Google Scholar

[15]

V. Tomás, J. Rosenthal and R. Smarandache, Reverse-maximum distance profile convolutional codes over the erasure channel,, in Proc.19th Int. Symp. Math. Theory Netw. Syst. (ed. A. Edelmayer), (2010), 2121.  doi: 10.5167/uzh-44714.  Google Scholar

[16]

V. Tomás, J. Rosenthal and R. Smarandache, Decoding of convolutional codes over the erasure channel,, IEEE Trans. Inf. Theory, 58 (2012), 90.  doi: 10.1109/TIT.2011.2171530.  Google Scholar

[17]

P. A. Weiner, Multidimensional Convolutional Codes, Ph.D thesis,, Univ. Notre Dame, (1998).   Google Scholar

show all references

References:
[1]

P. Almeida, D. Napp and R. Pinto, A new class of superregular matrices and MDP convolutional codes,, Linear Algebra Appl., 439 (2013), 2145.  doi: 10.1016/j.laa.2013.06.013.  Google Scholar

[2]

M. Arai, A. Yamamoto, A. Yamaguchi, S. Fukumoto and K. Iwasaki, Analysis of using convolutional codes to recover packet losses over burst erasure channels,, in Proc. 2001 Pacific Rim Int. Symp. Depend. Comp., (2001), 258.  doi: 10.1109/PRDC.2001.992706.  Google Scholar

[3]

J. J. Climent, D. Napp, C. Perea and R. Pinto, A construction of MDS 2D convolutional codes of rate 1/n based on superregular matrices,, Linear Algebra Appl., 437 (2012), 766.  doi: 10.1016/j.laa.2012.02.032.  Google Scholar

[4]

E. Fornasini and M. E. Valcher, Algebraic aspects of two-dimensional convolutional codes,, IEEE Trans. Inf. Theory, 40 (1994), 1068.  doi: 10.1109/18.335967.  Google Scholar

[5]

E. Fornasini and M. E. Valcher, On 2D finite support convolutional codes: an algebraic approach,, Multidim. Syst. Signal Proc., 5 (1994), 231.  doi: 10.1007/BF00980707.  Google Scholar

[6]

E. Fornasini and M. E. Valcher, nD polynomial matrices with applications to multidimensional signal analysis,, Multidim. Syst. Signal Proc., 8 (1997), 387.  doi: 10.1023/A:1008256224288.  Google Scholar

[7]

H. Gluesing-Luerssen, J. Rosenthal and R. Smarandache, Strongly MDS convolutional codes,, IEEE Trans. Inf. Theory, 52 (2006), 584.  doi: 10.1109/TIT.2005.862100.  Google Scholar

[8]

H. Gluesing-Luerssen, J. Rosenthal and P. Weiner, Duality between multidimensional convolutional codes and systems,, in Advances in Mathematical Systems Theory (eds. F. Colonius, (2000), 135.  doi: 10.1007/978-1-4612-0179-3_8.  Google Scholar

[9]

R. Hutchinson, The existence of strongly MDS convolutional codes,, SIAM J. Control Opt., 47 (2008), 2812.  doi: 10.1137/050638977.  Google Scholar

[10]

R. Hutchinson, J. Rosenthal and R. Smarandache, Convolutional codes with maximum distance profile,, Syst. Control Lett., 54 (2005), 53.  doi: 10.1016/j.sysconle.2004.06.005.  Google Scholar

[11]

R. Hutchinson, R. Smarandache and J. Trumpf, On superregular matrices and MDP convolutional codes,, Linear Algebra Appl., 428 (2008), 2585.  doi: 10.1016/j.laa.2008.02.011.  Google Scholar

[12]

P. Jangisarakul and C. Charoenlarpnopparut, Algebraic decoder of multidimensional convolutional code: Constructive algorithms for determining syndrome decoder and decoder matrix based on Gröbner basis,, Multidim. Syst. Signal Proc., 22 (2011), 67.  doi: 10.1007/s11045-010-0139-7.  Google Scholar

[13]

D. Napp, C. Perea and R. Pinto, Input-state-output representations and constructions of finite support 2D convolutional codes,, Adv. Math. Commun., 4 (2010), 533.  doi: 10.3934/amc.2010.4.533.  Google Scholar

[14]

V. Tomás, Complete-MDP Convolutional Codes over the Erasure Channel, Ph.D thesis,, Univ. Alicante, (2010).   Google Scholar

[15]

V. Tomás, J. Rosenthal and R. Smarandache, Reverse-maximum distance profile convolutional codes over the erasure channel,, in Proc.19th Int. Symp. Math. Theory Netw. Syst. (ed. A. Edelmayer), (2010), 2121.  doi: 10.5167/uzh-44714.  Google Scholar

[16]

V. Tomás, J. Rosenthal and R. Smarandache, Decoding of convolutional codes over the erasure channel,, IEEE Trans. Inf. Theory, 58 (2012), 90.  doi: 10.1109/TIT.2011.2171530.  Google Scholar

[17]

P. A. Weiner, Multidimensional Convolutional Codes, Ph.D thesis,, Univ. Notre Dame, (1998).   Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[10]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[11]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[12]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[13]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[14]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[15]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[16]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (5)

[Back to Top]