-
Previous Article
On extendability of additive code isometries
- AMC Home
- This Issue
-
Next Article
An approach to the performance of SPC product codes on the erasure channel
Convolutional codes with a matrix-algebra word-ambient
1. | Department of Algebra and CITIC-UGR, University of Granada, E18071 Granada |
2. | Department of Computer Sciences and AI, and CITIC, Universidad de Granada, E51001 Ceuta, Spain |
References:
[1] |
S. Estrada, J. R. García-Rozas, J. Peralta and E. Sánchez-García, Group convolutional codes,, Adv. Math. Commun., (2008), 83.
doi: 10.3934/amc.2008.2.83. |
[2] |
G. D. Forney Jr., Convolutional codes I: Algebraic structure,, IEEE Trans. Inf. Theory, 16 (1970), 720.
doi: 10.1109/TIT.1970.1054541. |
[3] |
H. Gluesing-Luerssen and W. Schmale, On cyclic convolutional codes,, Acta Appl. Math., 82 (2004), 183.
doi: 10.1023/B:ACAP.0000027534.61242.09. |
[4] |
J. Gómez-Torrecillas, F. J. Lobillo and G. Navarro, Ideal codes over separable ring extensions,, preprint, (). Google Scholar |
[5] |
J. Gómez-Torrecillas, F. J. Lobillo and G. Navarro, Cyclic convolutional codes over separable extensions,, in Coding Theory and Applications (eds. R. Pinto, (2015), 209.
doi: 10.1007/978-3-319-17296-5_22. |
[6] |
K. Hirata and K. Sugano, On semisimple extensions and separable extensions over non commutative rings,, J. Math. Soc. Japan, 18 (1966), 360.
doi: 10.2969/jmsj/01840360. |
[7] |
R. A. Horn and C. R. Johnson, Topics in Matrix Analysis,, Cambridge Univ. Press, (1994).
doi: 10.1017/CBO9780511840371. |
[8] |
N. Jacobson, Basic Algebra: II,, W. H. Freeman Company, (1980).
|
[9] |
S. R. López-Permouth and S. Szabo, Convolutional codes with additional algebraic structure,, J. Pure Appl. Algebra, 217 (2013), 958.
doi: 10.1016/j.jpaa.2012.09.017. |
[10] |
R. Pierce, Associative Algebras,, Springer-Verlag, (1982).
doi: 10.1007/978-1-4757-0163-0. |
[11] |
P. Piret, Structure and constructions of cyclic convolutional codes,, IEEE Trans. Inf. Theory, 22 (1976), 147.
doi: 10.1109/TIT.1976.1055531. |
show all references
References:
[1] |
S. Estrada, J. R. García-Rozas, J. Peralta and E. Sánchez-García, Group convolutional codes,, Adv. Math. Commun., (2008), 83.
doi: 10.3934/amc.2008.2.83. |
[2] |
G. D. Forney Jr., Convolutional codes I: Algebraic structure,, IEEE Trans. Inf. Theory, 16 (1970), 720.
doi: 10.1109/TIT.1970.1054541. |
[3] |
H. Gluesing-Luerssen and W. Schmale, On cyclic convolutional codes,, Acta Appl. Math., 82 (2004), 183.
doi: 10.1023/B:ACAP.0000027534.61242.09. |
[4] |
J. Gómez-Torrecillas, F. J. Lobillo and G. Navarro, Ideal codes over separable ring extensions,, preprint, (). Google Scholar |
[5] |
J. Gómez-Torrecillas, F. J. Lobillo and G. Navarro, Cyclic convolutional codes over separable extensions,, in Coding Theory and Applications (eds. R. Pinto, (2015), 209.
doi: 10.1007/978-3-319-17296-5_22. |
[6] |
K. Hirata and K. Sugano, On semisimple extensions and separable extensions over non commutative rings,, J. Math. Soc. Japan, 18 (1966), 360.
doi: 10.2969/jmsj/01840360. |
[7] |
R. A. Horn and C. R. Johnson, Topics in Matrix Analysis,, Cambridge Univ. Press, (1994).
doi: 10.1017/CBO9780511840371. |
[8] |
N. Jacobson, Basic Algebra: II,, W. H. Freeman Company, (1980).
|
[9] |
S. R. López-Permouth and S. Szabo, Convolutional codes with additional algebraic structure,, J. Pure Appl. Algebra, 217 (2013), 958.
doi: 10.1016/j.jpaa.2012.09.017. |
[10] |
R. Pierce, Associative Algebras,, Springer-Verlag, (1982).
doi: 10.1007/978-1-4757-0163-0. |
[11] |
P. Piret, Structure and constructions of cyclic convolutional codes,, IEEE Trans. Inf. Theory, 22 (1976), 147.
doi: 10.1109/TIT.1976.1055531. |
[1] |
Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046 |
[2] |
Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094 |
[3] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[4] |
Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010 |
[5] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[6] |
Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020125 |
[7] |
Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049 |
[8] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[9] |
Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020173 |
[10] |
Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285 |
[11] |
Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060 |
[12] |
Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020167 |
[13] |
Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125 |
[14] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]