February  2016, 10(1): 29-43. doi: 10.3934/amc.2016.10.29

Convolutional codes with a matrix-algebra word-ambient

1. 

Department of Algebra and CITIC-UGR, University of Granada, E18071 Granada

2. 

Department of Computer Sciences and AI, and CITIC, Universidad de Granada, E51001 Ceuta, Spain

Received  November 2014 Revised  July 2015 Published  March 2016

Let $\mathcal{M}_n(\mathbb{F})$be the algebra of \(n \times n\) matrices over the finite field $\mathbb{F}$. In this paper we prove that the dual code of each ideal convolutional code in the skew-polynomial ring $\mathcal{M}_n(\mathbb{F})[z;\sigma_U]$ which is a direct summand as a left ideal, is also an ideal convolutional code over $\mathcal{M}_n(\mathbb{F})[z;\sigma_UT]$ and a direct summand as a left ideal. Moreover we provide an algorithm to decide if \(\sigma_U\) is a separable automorphism and returns the corresponding separability element, when pertinent.
Citation: José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Convolutional codes with a matrix-algebra word-ambient. Advances in Mathematics of Communications, 2016, 10 (1) : 29-43. doi: 10.3934/amc.2016.10.29
References:
[1]

S. Estrada, J. R. García-Rozas, J. Peralta and E. Sánchez-García, Group convolutional codes,, Adv. Math. Commun., (2008), 83.  doi: 10.3934/amc.2008.2.83.  Google Scholar

[2]

G. D. Forney Jr., Convolutional codes I: Algebraic structure,, IEEE Trans. Inf. Theory, 16 (1970), 720.  doi: 10.1109/TIT.1970.1054541.  Google Scholar

[3]

H. Gluesing-Luerssen and W. Schmale, On cyclic convolutional codes,, Acta Appl. Math., 82 (2004), 183.  doi: 10.1023/B:ACAP.0000027534.61242.09.  Google Scholar

[4]

J. Gómez-Torrecillas, F. J. Lobillo and G. Navarro, Ideal codes over separable ring extensions,, preprint, ().   Google Scholar

[5]

J. Gómez-Torrecillas, F. J. Lobillo and G. Navarro, Cyclic convolutional codes over separable extensions,, in Coding Theory and Applications (eds. R. Pinto, (2015), 209.  doi: 10.1007/978-3-319-17296-5_22.  Google Scholar

[6]

K. Hirata and K. Sugano, On semisimple extensions and separable extensions over non commutative rings,, J. Math. Soc. Japan, 18 (1966), 360.  doi: 10.2969/jmsj/01840360.  Google Scholar

[7]

R. A. Horn and C. R. Johnson, Topics in Matrix Analysis,, Cambridge Univ. Press, (1994).  doi: 10.1017/CBO9780511840371.  Google Scholar

[8]

N. Jacobson, Basic Algebra: II,, W. H. Freeman Company, (1980).   Google Scholar

[9]

S. R. López-Permouth and S. Szabo, Convolutional codes with additional algebraic structure,, J. Pure Appl. Algebra, 217 (2013), 958.  doi: 10.1016/j.jpaa.2012.09.017.  Google Scholar

[10]

R. Pierce, Associative Algebras,, Springer-Verlag, (1982).  doi: 10.1007/978-1-4757-0163-0.  Google Scholar

[11]

P. Piret, Structure and constructions of cyclic convolutional codes,, IEEE Trans. Inf. Theory, 22 (1976), 147.  doi: 10.1109/TIT.1976.1055531.  Google Scholar

show all references

References:
[1]

S. Estrada, J. R. García-Rozas, J. Peralta and E. Sánchez-García, Group convolutional codes,, Adv. Math. Commun., (2008), 83.  doi: 10.3934/amc.2008.2.83.  Google Scholar

[2]

G. D. Forney Jr., Convolutional codes I: Algebraic structure,, IEEE Trans. Inf. Theory, 16 (1970), 720.  doi: 10.1109/TIT.1970.1054541.  Google Scholar

[3]

H. Gluesing-Luerssen and W. Schmale, On cyclic convolutional codes,, Acta Appl. Math., 82 (2004), 183.  doi: 10.1023/B:ACAP.0000027534.61242.09.  Google Scholar

[4]

J. Gómez-Torrecillas, F. J. Lobillo and G. Navarro, Ideal codes over separable ring extensions,, preprint, ().   Google Scholar

[5]

J. Gómez-Torrecillas, F. J. Lobillo and G. Navarro, Cyclic convolutional codes over separable extensions,, in Coding Theory and Applications (eds. R. Pinto, (2015), 209.  doi: 10.1007/978-3-319-17296-5_22.  Google Scholar

[6]

K. Hirata and K. Sugano, On semisimple extensions and separable extensions over non commutative rings,, J. Math. Soc. Japan, 18 (1966), 360.  doi: 10.2969/jmsj/01840360.  Google Scholar

[7]

R. A. Horn and C. R. Johnson, Topics in Matrix Analysis,, Cambridge Univ. Press, (1994).  doi: 10.1017/CBO9780511840371.  Google Scholar

[8]

N. Jacobson, Basic Algebra: II,, W. H. Freeman Company, (1980).   Google Scholar

[9]

S. R. López-Permouth and S. Szabo, Convolutional codes with additional algebraic structure,, J. Pure Appl. Algebra, 217 (2013), 958.  doi: 10.1016/j.jpaa.2012.09.017.  Google Scholar

[10]

R. Pierce, Associative Algebras,, Springer-Verlag, (1982).  doi: 10.1007/978-1-4757-0163-0.  Google Scholar

[11]

P. Piret, Structure and constructions of cyclic convolutional codes,, IEEE Trans. Inf. Theory, 22 (1976), 147.  doi: 10.1109/TIT.1976.1055531.  Google Scholar

[1]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[2]

Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094

[3]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[4]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[5]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[6]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[7]

Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049

[8]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[9]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[10]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[11]

Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060

[12]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[13]

Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125

[14]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (98)
  • HTML views (0)
  • Cited by (2)

[Back to Top]