February  2016, 10(1): 45-52. doi: 10.3934/amc.2016.10.45

On extendability of additive code isometries

1. 

IMATH, Université de Toulon, B.P. 20132, 83957 La Garde, France

Received  November 2014 Revised  July 2015 Published  March 2016

For linear codes, the MacWilliams Extension Theorem states that each linear isometry of a linear code extends to a linear isometry of the whole space. But, in general, this is not the situation for nonlinear codes. In this paper codes over a vector space alphabet are considered. It is proved that if the length of such code is less than some threshold value, then an analogue of the MacWilliams Extension Theorem holds. One family of unextendable code isometries for the threshold value of code length is described.
Citation: Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45
References:
[1]

S. V. Avgustinovich and F. I. Solov'eva, To the metrical rigidity of binary codes,, Probl. Inf. Transm., 39 (2003), 178.  doi: 10.1023/A:1025148221096.  Google Scholar

[2]

K. Bogart, D. Goldberg and J. Gordon, An elementary proof of the MacWilliams theorem on equivalence of codes,, Inf. Control, 37 (1978), 19.  doi: 10.1016/S0019-9958(78)90389-3.  Google Scholar

[3]

R. C. Bose and R. C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes,, J. Combin. Theory, 1 (1966), 96.  doi: 10.1016/S0021-9800(66)80007-8.  Google Scholar

[4]

I. Constantinescu and W. Heise, On the concept of code-isomorphy,, J. Geometry, 57 (1996), 63.  doi: 10.1007/BF01229251.  Google Scholar

[5]

H. Q. Dinh and S. R. López-Permouth, On the equivalence of codes over rings and modules,, Finite Fields Appl., 10 (2004), 615.  doi: 10.1016/j.ffa.2004.01.001.  Google Scholar

[6]

M. Greferath, A. Nechaev and R. Wisbauer, Finite quasi-Frobenius modules and linear codes,, J. Algebra Appl., 3 (2004), 247.  doi: 10.1142/S0219498804000873.  Google Scholar

[7]

M. Greferath and S. E. Schmidt, Finite-ring combinatorics and MacWilliams equivalence theorem,, J. Combin. Theory Ser. A, 92 (2000), 17.  doi: 10.1006/jcta.1999.3033.  Google Scholar

[8]

J. Gruska, Quantum Computing,, McGraw-Hill, (1999).   Google Scholar

[9]

D. I. Kovalevskaya, On metric rigidity for some classes of codes,, Probl. Inf. Transm., 47 (2011), 15.  doi: 10.1134/S0032946011010029.  Google Scholar

[10]

J. Luh, On the representation of vector spaces as a finite union of subspaces,, Acta Math. Acad. Sci. Hungar., 23 (1972), 341.  doi: 10.1007/BF01896954.  Google Scholar

[11]

F. J. MacWilliams, Combinatorial Properties of Elementary Abelian Groups,, Ph.D thesis, (1962).   Google Scholar

[12]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes,, North-Holland, (1977).   Google Scholar

[13]

F. Solov'eva, T. Honold, S. Avgustinovich and W. Heise, On the extendability of code isometries,, J. Geometry, 61 (1998), 2.  doi: 10.1007/BF01237489.  Google Scholar

[14]

H. N. Ward and J. A. Wood, Characters and the equivalence of codes,, J. Combin. Theory Ser. A, 73 (1996), 348.  doi: 10.1016/S0097-3165(96)80011-2.  Google Scholar

[15]

J. A. Wood, Duality for modules over finite rings and applications to coding theory,, Amer. J. Math., 121 (1999), 555.  doi: 10.1353/ajm.1999.0024.  Google Scholar

[16]

J. A. Wood, Foundations of linear codes defined over finite modules: The extension theorem and the MacWilliams identities,, in Codes over Rings (ed. P. Sóle), (2009), 124.  doi: 10.1142/9789812837691_0004.  Google Scholar

show all references

References:
[1]

S. V. Avgustinovich and F. I. Solov'eva, To the metrical rigidity of binary codes,, Probl. Inf. Transm., 39 (2003), 178.  doi: 10.1023/A:1025148221096.  Google Scholar

[2]

K. Bogart, D. Goldberg and J. Gordon, An elementary proof of the MacWilliams theorem on equivalence of codes,, Inf. Control, 37 (1978), 19.  doi: 10.1016/S0019-9958(78)90389-3.  Google Scholar

[3]

R. C. Bose and R. C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes,, J. Combin. Theory, 1 (1966), 96.  doi: 10.1016/S0021-9800(66)80007-8.  Google Scholar

[4]

I. Constantinescu and W. Heise, On the concept of code-isomorphy,, J. Geometry, 57 (1996), 63.  doi: 10.1007/BF01229251.  Google Scholar

[5]

H. Q. Dinh and S. R. López-Permouth, On the equivalence of codes over rings and modules,, Finite Fields Appl., 10 (2004), 615.  doi: 10.1016/j.ffa.2004.01.001.  Google Scholar

[6]

M. Greferath, A. Nechaev and R. Wisbauer, Finite quasi-Frobenius modules and linear codes,, J. Algebra Appl., 3 (2004), 247.  doi: 10.1142/S0219498804000873.  Google Scholar

[7]

M. Greferath and S. E. Schmidt, Finite-ring combinatorics and MacWilliams equivalence theorem,, J. Combin. Theory Ser. A, 92 (2000), 17.  doi: 10.1006/jcta.1999.3033.  Google Scholar

[8]

J. Gruska, Quantum Computing,, McGraw-Hill, (1999).   Google Scholar

[9]

D. I. Kovalevskaya, On metric rigidity for some classes of codes,, Probl. Inf. Transm., 47 (2011), 15.  doi: 10.1134/S0032946011010029.  Google Scholar

[10]

J. Luh, On the representation of vector spaces as a finite union of subspaces,, Acta Math. Acad. Sci. Hungar., 23 (1972), 341.  doi: 10.1007/BF01896954.  Google Scholar

[11]

F. J. MacWilliams, Combinatorial Properties of Elementary Abelian Groups,, Ph.D thesis, (1962).   Google Scholar

[12]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes,, North-Holland, (1977).   Google Scholar

[13]

F. Solov'eva, T. Honold, S. Avgustinovich and W. Heise, On the extendability of code isometries,, J. Geometry, 61 (1998), 2.  doi: 10.1007/BF01237489.  Google Scholar

[14]

H. N. Ward and J. A. Wood, Characters and the equivalence of codes,, J. Combin. Theory Ser. A, 73 (1996), 348.  doi: 10.1016/S0097-3165(96)80011-2.  Google Scholar

[15]

J. A. Wood, Duality for modules over finite rings and applications to coding theory,, Amer. J. Math., 121 (1999), 555.  doi: 10.1353/ajm.1999.0024.  Google Scholar

[16]

J. A. Wood, Foundations of linear codes defined over finite modules: The extension theorem and the MacWilliams identities,, in Codes over Rings (ed. P. Sóle), (2009), 124.  doi: 10.1142/9789812837691_0004.  Google Scholar

[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[5]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[6]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[10]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[11]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[14]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[15]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[16]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[17]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[18]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[19]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[20]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]