\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Probability estimates for reachability of linear systems defined over finite fields

Abstract Related Papers Cited by
  • This paper deals with the probability that random linear systems defined over a finite field are reachable. Explicit formulas are derived for the probabilities that a linear input-state system is reachable, that the reachability matrix has a prescribed rank, as well as for the number of cyclic vectors of a cyclic matrix. We also estimate the probability that the parallel connection of finitely many single-input systems is reachable. These results may be viewed as a first step to calculate the probability that a network of linear systems is reachable.
    Mathematics Subject Classification: Primary: 93B05, 93C05, 11T06; Secondary: 93B25, 93C55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J.-J. Climent, V. Herranz and C. Perea, A first approximation of concatenated convolutional codes from linear systems theory viewpoint, Linear Alg. Appl., 425 (2007), 673-699.doi: 10.1016/j.laa.2007.03.017.

    [2]

    P. A. Fuhrmann, On controllability and observability of systems connected in parallel, IEEE Trans. Circ. Syst., 22 (1975), 57.

    [3]

    P. A. Fuhrmann and U. Helmke, The Mathematics of Networks of Linear Systems, Springer, New York, 2015.doi: 10.1007/978-3-319-16646-9.

    [4]

    M. Garcia-Armas, S. R. Ghorpade and S. Ram, Relatively prime polynomials and nonsingular Hankel matrices over finite fields, J. Combin. Theory Ser. A, 118 (2011), 819-828.doi: 10.1016/j.jcta.2010.11.005.

    [5]

    U. Helmke, Topology of the moduli space for reachable linear dynamical systems: The complex case, Math. Syst. Theory, 19 (1986), 155-187.doi: 10.1007/BF01704912.

    [6]

    U. Helmke, The cohomology of moduli spaces for linear dynamical systems, Regensburger Math. Schriften, 24 (1993).

    [7]

    T. Ho and D. S. Lun, Network Coding: An Introduction, Cambridge Univ. Press, New York, 2008.doi: 10.1017/CBO9780511754623.

    [8]

    S. Höst, Woven convolutional codes I: Encoder properties, IEEE Trans. Inf. Theory, 48 (2002), 149-161.doi: 10.1109/18.971745.

    [9]

    A. S. Jarrah, R. Laubenbacher, B. Stigler and M. Stillman, Reverse-engineering of polynomial dynamical systems, Adv. Appl. Math., 39 (2007), 477-489.doi: 10.1016/j.aam.2006.08.004.

    [10]

    M. Kociecky and K. M. Przyluski, On the number of controllable linear systems over a finite field, Linear Alg. Appl., 122-124 (1989), 115-122.doi: 10.1016/0024-3795(89)90649-6.

    [11]

    J. Milnor and J. Stasheff, Characteristic Classes, Princeton Univ. Press, 1974.

    [12]

    J. A. De Reyna and R. Heyman, Counting tuples restricted by coprimality conditions, preprint, arXiv:1403.2769v1

    [13]

    J. Rosenthal, J. M. Schumacher and E. V. York, On behaviours and convolutional codes, IEEE Trans. Inf. Theory, 42 (1996), 1881-1891.doi: 10.1109/18.556682.

    [14]

    J. Rosenthal and E. V. York, BCH Convolutional Codes, IEEE Trans. Inf. Theory, 45 (1999), 1833-1844.doi: 10.1109/18.782104.

    [15]

    S. Sundaram and C. Hadjicostis, Structural controllability and observability of linear systems over finite fields with applications to mult-agent systems, IEEE Trans. Autom. Control, 58 (2013), 60-73.doi: 10.1109/TAC.2012.2204155.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(209) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return