-
Previous Article
The one-out-of-k retrieval problem and linear network coding
- AMC Home
- This Issue
-
Next Article
Probability estimates for reachability of linear systems defined over finite fields
On skew polynomial codes and lattices from quotients of cyclic division algebras
1. | Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore |
References:
[1] |
M. Artin, Noncommutative Rings,, 1999., (). Google Scholar |
[2] |
J. Combin. Theory Ser. A, 78 (1997), 92-119.
doi: 10.1006/jcta.1996.2763. |
[3] |
IEEE Trans. Commun., 61 (2013), 3396-3403. Google Scholar |
[4] |
AMS, 2013.
doi: 10.1090/surv/191. |
[5] |
IEEE Trans. Inf. Theory, 41 (1995), 366-377.
doi: 10.1109/18.370138. |
[6] |
Appl. Algebra Engin. Commun. Comput., 18 (2007), 379-389.
doi: 10.1007/s00200-007-0043-z. |
[7] |
J. Symb. Comput., 44 (2009), 1644-1656.
doi: 10.1016/j.jsc.2007.11.008. |
[8] |
Adv. Math. Commun., 2 (2008), 273-292.
doi: 10.3934/amc.2008.2.273. |
[9] |
J. H. Conway and N. J. A Sloane, Sphere Packings, Lattices and Groups,, Springer., (). Google Scholar |
[10] |
in Coding Theory and Applications, Springer, 2015, 161-167. Google Scholar |
[11] |
Springer, 2013.
doi: 10.1007/978-3-658-00360-9. |
[12] |
IEEE Trans. Inf. Theory, 34 (1988), 1123-1151.
doi: 10.1109/18.21245. |
[13] |
in IEEE Int. Workshop Inf. Theory, 2013, 1-5. Google Scholar |
[14] |
Adv. Math. Commun., 7 (2013), 441-461.
doi: 10.3934/amc.2013.7.441. |
[15] |
IEEE Trans. Inf. Theory, 49 (2003), 2596-2616.
doi: 10.1109/TIT.2003.817831. |
show all references
References:
[1] |
M. Artin, Noncommutative Rings,, 1999., (). Google Scholar |
[2] |
J. Combin. Theory Ser. A, 78 (1997), 92-119.
doi: 10.1006/jcta.1996.2763. |
[3] |
IEEE Trans. Commun., 61 (2013), 3396-3403. Google Scholar |
[4] |
AMS, 2013.
doi: 10.1090/surv/191. |
[5] |
IEEE Trans. Inf. Theory, 41 (1995), 366-377.
doi: 10.1109/18.370138. |
[6] |
Appl. Algebra Engin. Commun. Comput., 18 (2007), 379-389.
doi: 10.1007/s00200-007-0043-z. |
[7] |
J. Symb. Comput., 44 (2009), 1644-1656.
doi: 10.1016/j.jsc.2007.11.008. |
[8] |
Adv. Math. Commun., 2 (2008), 273-292.
doi: 10.3934/amc.2008.2.273. |
[9] |
J. H. Conway and N. J. A Sloane, Sphere Packings, Lattices and Groups,, Springer., (). Google Scholar |
[10] |
in Coding Theory and Applications, Springer, 2015, 161-167. Google Scholar |
[11] |
Springer, 2013.
doi: 10.1007/978-3-658-00360-9. |
[12] |
IEEE Trans. Inf. Theory, 34 (1988), 1123-1151.
doi: 10.1109/18.21245. |
[13] |
in IEEE Int. Workshop Inf. Theory, 2013, 1-5. Google Scholar |
[14] |
Adv. Math. Commun., 7 (2013), 441-461.
doi: 10.3934/amc.2013.7.441. |
[15] |
IEEE Trans. Inf. Theory, 49 (2003), 2596-2616.
doi: 10.1109/TIT.2003.817831. |
[1] |
Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077 |
[2] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[3] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[4] |
Antonio Cossidente, Sascha Kurz, Giuseppe Marino, Francesco Pavese. Combining subspace codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021007 |
[5] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[6] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[7] |
Emily McMillon, Allison Beemer, Christine A. Kelley. Extremal absorbing sets in low-density parity-check codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021003 |
[8] |
Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021002 |
[9] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[10] |
Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020135 |
[11] |
Muhammad Ajmal, Xiande Zhang. New optimal error-correcting codes for crosstalk avoidance in on-chip data buses. Advances in Mathematics of Communications, 2021, 15 (3) : 487-506. doi: 10.3934/amc.2020078 |
[12] |
Yun Gao, Shilin Yang, Fang-Wei Fu. Some optimal cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^t} $-codes. Advances in Mathematics of Communications, 2021, 15 (3) : 387-396. doi: 10.3934/amc.2020072 |
[13] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[14] |
Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62. |
[15] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[16] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
[17] |
Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079 |
[18] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[19] |
Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3531-3553. doi: 10.3934/dcds.2021006 |
[20] |
Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]