Citation: |
[1] |
M. Aliasgari, M. R. Sadeghi and D. Panario, Gröbner Bases for Lattices and an Algebraic Decoding Algorithm, IEEE Trans. Commun., 61 (2013), 1222-1230. |
[2] |
A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Trans. Inf. Theory, 44 (1998), 2010-2017.doi: 10.1109/18.705584. |
[3] |
A. Barg, Complexity issues in coding theory, in Handbook of Coding Theory, North-Holland, Amsterdam, 1998, 649-754. |
[4] |
E. R. Berlekamp, R. J. McEliece and H. C. A. Van Tilborg, On the inherent intractability of certain coding problems, IEEE Trans. Inf. Theory, IT-24 (1978), 384-386. |
[5] |
M. Borges-Quintana, M. A. Borges-Trenard, P. Fitzpatrick and E. Martínez-Moro, Gröbner bases and combinatorics for binary codes, Appl. Algebra Engrg. Comm. Comput., 19 (2008), 393-411.doi: 10.1007/s00200-008-0080-2. |
[6] |
M. Borges-Quintana, M. A. Borges-Trenard, I. Márquez-Corbella and E. Martínez-Moro, An algebraic view to gradient descent decoding, in IEEE Inf. Theory Workshop (ITW), 2010, 1-4. |
[7] |
J. Bruck and M. Naor, The hardness of decoding linear codes with preprocessing, IEEE Trans. Inf. Theory, 36 (1990), 381-385.doi: 10.1109/18.52484. |
[8] |
D. A. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer, 2007.doi: 10.1007/978-0-387-35651-8. |
[9] |
F. Di Biase and R. Urbanke, An algorithm to calculate the kernel of certain polynomial ring homomorphisms, Exper. Math., 4 (1995), 227-234. |
[10] |
D. Eisenbud and B. Sturmfels, Binomial ideals, Duke Math. J., 84 (1996), 1-45.doi: 10.1215/S0012-7094-96-08401-X. |
[11] |
J. C. Faugère, P. Gianni, D. Lazard and T. Mora, Efficient computation of zero-dimensional Gröbner bases by change of ordering, J. Symbolic Comput., 16 (193), 329-344. doi: 10.1006/jsco.1993.1051. |
[12] |
P. Fitzpatrick, Solving a multivariable congruence by change of term order, J. Symb. Comput., 24 (1997), 575-589.doi: 10.1006/jsco.1997.0153. |
[13] |
P. Fitzpatrick and J. Flynn, A Gröbner basis technique for Padé approximation, J. Symb. Comput., 13 (1992), 133-138.doi: 10.1016/S0747-7171(08)80087-9. |
[14] |
D. Ikegami and Y. Kaji, Maximum likelihood decoding for linear block codes using Grobner bases, IEICE Trans. Fund. Electron. Commun. Comput. Sci., E86-A (2003), 643-651. |
[15] |
R. A. Liebler, Implementing gradient descent decoding, Michigan Math. J., 58 (2009), 285-291.doi: 10.1307/mmj/1242071693. |
[16] |
I. Márquez-Corbella and E. Martínez-Moro, Algebraic structure of the minimal support codewords set of some linear codes, Adv. Math. Commun., 5 (2011), 233-244.doi: 10.3934/amc.2011.5.233. |
[17] |
I. Márquez-Corbella and E. Martínez-Moro, Decomposition of modular codes for computing test sets and Graver basis, Math. Comp. Sci., 6 (2012), 147-165.doi: 10.1007/s11786-012-0120-y. |
[18] |
E. Prange, Step-by-step decoding in groups with weight function. Part 1, Air Force Cambridge Res. Labs Hanscom AFB MA, 1961. |
[19] |
P. Samuel, Algebraic Theory of Numbers: Translated from the French by Allan J. Silberger, Dover, 2013. |
[20] |
B. Sturmfels, Gröbner Bases and Convex Polytopes, Amer. Math. Soc., Providence, 1996. |