\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the ideal associated to a linear code

Abstract Related Papers Cited by
  • This article aims to explore the bridge between the algebraic structure of a linear code and the complete decoding process. To this end, we associate a specific binomial ideal $I_+(\mathcal C)$ to an arbitrary linear code. The binomials involved in the reduced Gröbner basis of such an ideal relative to a degree-compatible ordering induce a uniquely defined test-set for the code, and this allows the description of a Hamming metric decoding procedure. Moreover, the binomials involved in the Graver basis of $I_+(\mathcal C)$ provide a universal test-set which turns out to be a set containing the set of codewords of minimal support of the code.
    Mathematics Subject Classification: Primary: 94B05, 13P25; Secondary: 13P10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Aliasgari, M. R. Sadeghi and D. Panario, Gröbner Bases for Lattices and an Algebraic Decoding Algorithm, IEEE Trans. Commun., 61 (2013), 1222-1230.

    [2]

    A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Trans. Inf. Theory, 44 (1998), 2010-2017.doi: 10.1109/18.705584.

    [3]

    A. Barg, Complexity issues in coding theory, in Handbook of Coding Theory, North-Holland, Amsterdam, 1998, 649-754.

    [4]

    E. R. Berlekamp, R. J. McEliece and H. C. A. Van Tilborg, On the inherent intractability of certain coding problems, IEEE Trans. Inf. Theory, IT-24 (1978), 384-386.

    [5]

    M. Borges-Quintana, M. A. Borges-Trenard, P. Fitzpatrick and E. Martínez-Moro, Gröbner bases and combinatorics for binary codes, Appl. Algebra Engrg. Comm. Comput., 19 (2008), 393-411.doi: 10.1007/s00200-008-0080-2.

    [6]

    M. Borges-Quintana, M. A. Borges-Trenard, I. Márquez-Corbella and E. Martínez-Moro, An algebraic view to gradient descent decoding, in IEEE Inf. Theory Workshop (ITW), 2010, 1-4.

    [7]

    J. Bruck and M. Naor, The hardness of decoding linear codes with preprocessing, IEEE Trans. Inf. Theory, 36 (1990), 381-385.doi: 10.1109/18.52484.

    [8]

    D. A. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer, 2007.doi: 10.1007/978-0-387-35651-8.

    [9]

    F. Di Biase and R. Urbanke, An algorithm to calculate the kernel of certain polynomial ring homomorphisms, Exper. Math., 4 (1995), 227-234.

    [10]

    D. Eisenbud and B. Sturmfels, Binomial ideals, Duke Math. J., 84 (1996), 1-45.doi: 10.1215/S0012-7094-96-08401-X.

    [11]

    J. C. Faugère, P. Gianni, D. Lazard and T. Mora, Efficient computation of zero-dimensional Gröbner bases by change of ordering, J. Symbolic Comput., 16 (193), 329-344. doi: 10.1006/jsco.1993.1051.

    [12]

    P. Fitzpatrick, Solving a multivariable congruence by change of term order, J. Symb. Comput., 24 (1997), 575-589.doi: 10.1006/jsco.1997.0153.

    [13]

    P. Fitzpatrick and J. Flynn, A Gröbner basis technique for Padé approximation, J. Symb. Comput., 13 (1992), 133-138.doi: 10.1016/S0747-7171(08)80087-9.

    [14]

    D. Ikegami and Y. Kaji, Maximum likelihood decoding for linear block codes using Grobner bases, IEICE Trans. Fund. Electron. Commun. Comput. Sci., E86-A (2003), 643-651.

    [15]

    R. A. Liebler, Implementing gradient descent decoding, Michigan Math. J., 58 (2009), 285-291.doi: 10.1307/mmj/1242071693.

    [16]

    I. Márquez-Corbella and E. Martínez-Moro, Algebraic structure of the minimal support codewords set of some linear codes, Adv. Math. Commun., 5 (2011), 233-244.doi: 10.3934/amc.2011.5.233.

    [17]

    I. Márquez-Corbella and E. Martínez-Moro, Decomposition of modular codes for computing test sets and Graver basis, Math. Comp. Sci., 6 (2012), 147-165.doi: 10.1007/s11786-012-0120-y.

    [18]

    E. Prange, Step-by-step decoding in groups with weight function. Part 1, Air Force Cambridge Res. Labs Hanscom AFB MA, 1961.

    [19]

    P. Samuel, Algebraic Theory of Numbers: Translated from the French by Allan J. Silberger, Dover, 2013.

    [20]

    B. Sturmfels, Gröbner Bases and Convex Polytopes, Amer. Math. Soc., Providence, 1996.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(199) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return