May  2016, 10(2): 255-273. doi: 10.3934/amc.2016004

On self-dual cyclic codes of length $p^a$ over $GR(p^2,s)$

1. 

Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand

2. 

Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371

3. 

Department of Mathematics and Statistics, Faculty of Science, Thaksin University, Phatthalung Campus, Phatthalung 93110, Thailand

Received  January 2014 Published  April 2016

In this paper, cyclic codes over the Galois ring ${\rm GR}({p^2},s)$ are studied. The main result is the characterization and enumeration of Hermitian self-dual cyclic codes of length $p^a$ over ${\rm GR}({p^2},s)$. Combining with some known results and the standard Discrete Fourier Transform decomposition, we arrive at the characterization and enumeration of Euclidean self-dual cyclic codes of any length over ${\rm GR}({p^2},s)$.
Citation: Somphong Jitman, San Ling, Ekkasit Sangwisut. On self-dual cyclic codes of length $p^a$ over $GR(p^2,s)$. Advances in Mathematics of Communications, 2016, 10 (2) : 255-273. doi: 10.3934/amc.2016004
References:
[1]

T. Abualrub and R. Oehmke, On the generators of $\mathbb Z_4$ cyclic codes of length $2^e$,, IEEE Trans. Inf. Theory, 49 (2003), 2126.  doi: 10.1109/TIT.2003.815763.  Google Scholar

[2]

A. T. Benjamin and J. J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof,, Math. Assoc. Amer., (2003).   Google Scholar

[3]

T. Blackford, Cyclic codes over $\mathbb Z_4$ of oddly even length,, Discrete Appl. Math., 128 (2003), 27.  doi: 10.1016/S0166-218X(02)00434-1.  Google Scholar

[4]

S. T. Dougherty and S. Ling, Cyclic codes over $\mathbb Z_4$ of even length,, Des. Codes Cryptogr., 39 (2006), 127.  doi: 10.1007/s10623-005-2773-x.  Google Scholar

[5]

S. T. Dougherty and Y. H. Park, On modular cyclic codes,, Finite Fields Appl., 13 (2007), 31.  doi: 10.1016/j.ffa.2005.06.004.  Google Scholar

[6]

A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$ linearity of Kerdock, Preparata, Goethals and related codes,, IEEE Trans. Inf. Theory, 40 (1994), 301.  doi: 10.1109/18.312154.  Google Scholar

[7]

Y. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields,, IEEE Trans. Inf. Theory, 57 (2011), 2243.  doi: 10.1109/TIT.2010.2092415.  Google Scholar

[8]

S, Jitman, S. Ling, H. Liu and X. Xie, Abelian codes in principal ideal group algebras,, IEEE Trans. Inf. Theory, 59 (2013), 3046.  doi: 10.1109/TIT.2012.2236383.  Google Scholar

[9]

H. M. Kiah, K. H. Leung and S. Ling, Cyclic codes over $GR(p^2,m)$ of length $p^k$,, Finite Fields Appl., 14 (2008), 834.  doi: 10.1016/j.ffa.2008.02.003.  Google Scholar

[10]

H. M. Kiah, K. H. Leung and S. Ling, A note on cyclic codes over $GR(p^2,m)$ of length $p^k$,, Des. Codes Crypt., 63 (2012), 105.  doi: 10.1007/s10623-011-9538-5.  Google Scholar

[11]

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory,, Springer-Verlag, (2006).   Google Scholar

[12]

R. Sobhani and M. Esmaeili, A note on cyclic codes over $GR(p^2,m)$ of length $p^k$,, Finite Fields Appl., 15 (2009), 387.  doi: 10.1016/j.ffa.2009.01.004.  Google Scholar

[13]

R. Sobhani and M. Esmaeili, Cyclic and negacyclic codes over the Galois ring $GR(p^2,m)$,, Discrete Appl. Math., 157 (2009), 2892.  doi: 10.1016/j.dam.2009.03.001.  Google Scholar

[14]

Z. X. Wan, Lectures on Finite Fields and Galois Rings,, World Scientific, (2003).  doi: 10.1142/5350.  Google Scholar

show all references

References:
[1]

T. Abualrub and R. Oehmke, On the generators of $\mathbb Z_4$ cyclic codes of length $2^e$,, IEEE Trans. Inf. Theory, 49 (2003), 2126.  doi: 10.1109/TIT.2003.815763.  Google Scholar

[2]

A. T. Benjamin and J. J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof,, Math. Assoc. Amer., (2003).   Google Scholar

[3]

T. Blackford, Cyclic codes over $\mathbb Z_4$ of oddly even length,, Discrete Appl. Math., 128 (2003), 27.  doi: 10.1016/S0166-218X(02)00434-1.  Google Scholar

[4]

S. T. Dougherty and S. Ling, Cyclic codes over $\mathbb Z_4$ of even length,, Des. Codes Cryptogr., 39 (2006), 127.  doi: 10.1007/s10623-005-2773-x.  Google Scholar

[5]

S. T. Dougherty and Y. H. Park, On modular cyclic codes,, Finite Fields Appl., 13 (2007), 31.  doi: 10.1016/j.ffa.2005.06.004.  Google Scholar

[6]

A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$ linearity of Kerdock, Preparata, Goethals and related codes,, IEEE Trans. Inf. Theory, 40 (1994), 301.  doi: 10.1109/18.312154.  Google Scholar

[7]

Y. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields,, IEEE Trans. Inf. Theory, 57 (2011), 2243.  doi: 10.1109/TIT.2010.2092415.  Google Scholar

[8]

S, Jitman, S. Ling, H. Liu and X. Xie, Abelian codes in principal ideal group algebras,, IEEE Trans. Inf. Theory, 59 (2013), 3046.  doi: 10.1109/TIT.2012.2236383.  Google Scholar

[9]

H. M. Kiah, K. H. Leung and S. Ling, Cyclic codes over $GR(p^2,m)$ of length $p^k$,, Finite Fields Appl., 14 (2008), 834.  doi: 10.1016/j.ffa.2008.02.003.  Google Scholar

[10]

H. M. Kiah, K. H. Leung and S. Ling, A note on cyclic codes over $GR(p^2,m)$ of length $p^k$,, Des. Codes Crypt., 63 (2012), 105.  doi: 10.1007/s10623-011-9538-5.  Google Scholar

[11]

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory,, Springer-Verlag, (2006).   Google Scholar

[12]

R. Sobhani and M. Esmaeili, A note on cyclic codes over $GR(p^2,m)$ of length $p^k$,, Finite Fields Appl., 15 (2009), 387.  doi: 10.1016/j.ffa.2009.01.004.  Google Scholar

[13]

R. Sobhani and M. Esmaeili, Cyclic and negacyclic codes over the Galois ring $GR(p^2,m)$,, Discrete Appl. Math., 157 (2009), 2892.  doi: 10.1016/j.dam.2009.03.001.  Google Scholar

[14]

Z. X. Wan, Lectures on Finite Fields and Galois Rings,, World Scientific, (2003).  doi: 10.1142/5350.  Google Scholar

[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[3]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[4]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[5]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[6]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[7]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[8]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[9]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[10]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[11]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]