\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Constructing strongly-MDS convolutional codes with maximum distance profile

Abstract Related Papers Cited by
  • This paper revisits strongly-MDS convolutional codes with maximum distance profile (MDP). These are (non-binary) convolutional codes that have an optimum sequence of column distances and attains the generalized Singleton bound at the earliest possible time frame. These properties make these convolutional codes applicable over the erasure channel, since they are able to correct a large number of erasures per time interval. The existence of these codes have been shown only for some specific cases. This paper shows by construction the existence of convolutional codes that are both strongly-MDS and MDP for all choices of parameters.
    Mathematics Subject Classification: Primary: 94B10, 11T71.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. K. Aidinyan, On matrices with nondegenerate square submatrices, Probl. Peredachi Inf., 22 (1986), 106-108.

    [2]

    P. Almeida, D. Napp and R. Pinto, A new class of superregular matrices and MDP convolutional codes, Linear Algebra Appl., 439 (2013), 2145-2157.doi: 10.1016/j.laa.2013.06.013.

    [3]

    P. Almeida, D. Napp and R. Pinto, Superregular matrices and applications to convolutional codes, Linear Algebra Appl., 499 (2016), 1-25.doi: 10.1016/j.laa.2016.02.034.

    [4]

    M. Arai, A. Yamamoto, A. Yamaguchi, S. Fukumoto and K. Iwasaki, Analysis of using convolutional codes to recover packet losses over burst erasure channels, in Proc. 2001 Pacific Rim Int. Symp. Dependable Computing, Washington, DC, 2001, p.258.

    [5]

    J. J. Climent, D. Napp, C. Perea and R. Pinto, Maximum distance separable 2D convolutional codes, IEEE Trans. Inf. Theory, 62 (2016), 669-680.

    [6]

    M. A. Epstein, Algebraic decoding for a binary erasure channel, Technical Report 340, MIT, 1958.

    [7]

    S. Fashandi, S. O. Gharan and A. K. Khandani, Coding over an erasure channel with a large alphabet size, in Proc. IEEE Int. Symp. Inf. Theory, Toronto, 2008, 1053-1057.

    [8]

    E. Fornasini and R. Pinto, Matrix fraction descriptions in convolutional codes, Linear Algebra Appl., 392 (2004), 119-158.doi: 10.1016/j.laa.2004.06.007.

    [9]

    G. D. Forney, Jr., Structural analysis of convolutional codes via dual codes, IEEE Trans. Inf. Theory, 19 (1973), 512-518.

    [10]

    H. Gluesing-Luerssen, J. Rosenthal and R. Smarandache, Strongly MDS convolutional codes, IEEE Trans. Inf. Theory, 52 (2006), 584-598.doi: 10.1109/TIT.2005.862100.

    [11]

    R. Hutchinson, The existence of strongly MDS convolutional codes, SIAM J. Control Optim., 47 (2008), 2812-2826.doi: 10.1137/050638977.

    [12]

    R. Hutchinson, J. Rosenthal and R. Smarandache, Convolutional codes with maximum distance profile, Syst. Control Letters, 54 (2005), 53-63.doi: 10.1016/j.sysconle.2004.06.005.

    [13]

    R. Hutchinson, R. Smarandache and J. Trumpf, On superregular matrices and {MDP} convolutional codes, Linear Algebra Appl., 428 (2008), 2585-2596.doi: 10.1016/j.laa.2008.02.011.

    [14]

    R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional Coding, IEEE Press, New York, 1999.doi: 10.1109/9780470544693.

    [15]

    J. Lacan and J. Fimes, Systematic MDS erasure codes based on Vandermonde matrices, IEEE Commun. Letters, 8 (2004), 570-572.

    [16]

    F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes II, North-Holland Publishing Co., Amsterdam, 1977.

    [17]

    R. J. McEliece, The algebraic theory of convolutional codes, in Handbook of Coding Theory (eds. V. Pless and W.C. Huffman), Elsevier, Amsterdam, 1998, 1065-1138.

    [18]

    V. Paxson, End-to-end internet packet dynamics, IEEE/ACM Trans. Netw., 7 (1999), 277-292.

    [19]

    J. Rosenthal, Connections between linear systems and convolutional codes, in Codes, Systems and Graphical Models (eds. B. Marcus and J. Rosenthal), Springer-Verlag, 2001, 39-66.doi: 10.1007/978-1-4613-0165-3_2.

    [20]

    J. Rosenthal and R. Smarandache, Maximum distance separable convolutional codes, Appl. Algebra Engrg. Comm. Comput., 10 (1999), 15-32.doi: 10.1007/s002000050120.

    [21]

    J. Rosenthal and E. V. York, BCH convolutional codes, IEEE Trans. Inf. Theory, 45 (1999), 1833-1844.doi: 10.1109/18.782104.

    [22]

    R. M. Roth and A. Lempel, On MDS codes via Cauchy matrices, IEEE Trans. Inf. Theory, 35 (1989), 1314-1319.doi: 10.1109/18.45291.

    [23]

    R. M. Roth and G. Seroussi, On generator matrices of MDS codes, IEEE Trans. Inf. Theory, 31 (1985), 826-830.doi: 10.1109/TIT.1985.1057113.

    [24]

    V. Tomás, Complete-MDP Convolutional Codes over the Erasure Channel, Ph.D thesis, Univ. Alicante, Spain, 2010.

    [25]

    V. Tomás, J. Rosenthal and R. Smarandache, Decoding of MDP convolutional codes over the erasure channel, in Proc. 2009 IEEE Int. Symp. Inform. Theory, Seoul, 2009, 556-560.

    [26]

    V. Tomás, J. Rosenthal and R. Smarandache, Reverse-maximum distance profile convolutional codes over the erasure channel, in Proc. 19th Int. Symp. Math. Theory Networks Systems - MTNS, Budapest, 2010, 2121-2127.

    [27]

    V. Tomás, J. Rosenthal and R. Smarandache, Decoding of convolutional codes over the erasure channel, IEEE Trans. Inf. Theory, 58 (2012), 90-108.doi: 10.1109/TIT.2011.2171530.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(190) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return