May  2016, 10(2): 307-319. doi: 10.3934/amc.2016007

Decoding of differential AG codes

1. 

Department of Mathematics Education, Chosun University, Gwangju 61452, South Korea

Received  May 2014 Published  April 2016

The interpolation-based decoding that was developed for general evaluation AG codes is shown to be equally applicable to general differential AG codes. A performance analysis of the decoding algorithm, which is parallel to that of its companion algorithm, is reported. In particular, the decoding capacities of evaluation AG codes and differential AG codes are seen to be interrelated symmetrically. As an interesting special case, a decoding algorithm for classical Goppa codes is presented.
Citation: Kwankyu Lee. Decoding of differential AG codes. Advances in Mathematics of Communications, 2016, 10 (2) : 307-319. doi: 10.3934/amc.2016007
References:
[1]

P. Beelen and T. Høholdt, The decoding of algebraic geometry codes,, in Advances in Algebraic Geometry Codes, (2008), 49.  doi: 10.1142/9789812794017_0002.  Google Scholar

[2]

I. M. Duursma, Majority coset decoding,, IEEE Trans. Inf. Theory, 39 (1993), 1067.  doi: 10.1109/18.256518.  Google Scholar

[3]

G. L. Feng and T. T. N. Rao, Decoding algebraic-geometric codes up to the designed minimum distance,, IEEE Trans. Inf. Theory, 39 (1993), 37.  doi: 10.1109/18.179340.  Google Scholar

[4]

O. Geil, R. Matsumoto and D. Ruano, List decoding algorithms based on Gröbner bases for general one-point AG codes,, in Proc. IEEE Int. Symp. Inf. Theory, (2012), 86.   Google Scholar

[5]

O. Geil, R. Matsumoto and D. Ruano, Feng-Rao decoding of primary codes,, Finite Fields Appl., 23 (2013), 35.  doi: 10.1016/j.ffa.2013.03.005.  Google Scholar

[6]

O. Geil, C. Munuera, D. Ruano and F. Torres, On the order bounds for one-point AG codes,, Adv. Math. Commun., 5 (2011), 489.  doi: 10.3934/amc.2011.5.489.  Google Scholar

[7]

V. D. Goppa, Codes on algebraic curves,, Sov. Math. Dokl., 24 (1981), 170.   Google Scholar

[8]

T. Høholdt, J. H. van Lint and R. Pellikaan, Algebraic geometry of codes,, in Handbook of Coding Theory, (1998), 871.   Google Scholar

[9]

K. Lee, Bounds for generalized Hamming weights of general AG codes,, Finite Fields Appl., 34 (2015), 265.  doi: 10.1016/j.ffa.2015.02.006.  Google Scholar

[10]

K. Lee, M. Bras-Amorós and M. E. O'Sullivan, Unique decoding of general AG codes,, IEEE Trans. Inf. Theory, 60 (2014), 2038.  doi: 10.1109/TIT.2014.2306816.  Google Scholar

[11]

S. Sakata, H. E. Jensen and T. Høholdt, Generalized Berlekamp-Massey decoding of algebraic-geometric codes up to half the Feng-Rao bound,, IEEE Trans. Inf. Theory, 41 (1995), 1762.  doi: 10.1109/18.476248.  Google Scholar

[12]

H. Stichtenoth, Algebraic Function Fields and Codes,, 2nd edition, (2009).   Google Scholar

show all references

References:
[1]

P. Beelen and T. Høholdt, The decoding of algebraic geometry codes,, in Advances in Algebraic Geometry Codes, (2008), 49.  doi: 10.1142/9789812794017_0002.  Google Scholar

[2]

I. M. Duursma, Majority coset decoding,, IEEE Trans. Inf. Theory, 39 (1993), 1067.  doi: 10.1109/18.256518.  Google Scholar

[3]

G. L. Feng and T. T. N. Rao, Decoding algebraic-geometric codes up to the designed minimum distance,, IEEE Trans. Inf. Theory, 39 (1993), 37.  doi: 10.1109/18.179340.  Google Scholar

[4]

O. Geil, R. Matsumoto and D. Ruano, List decoding algorithms based on Gröbner bases for general one-point AG codes,, in Proc. IEEE Int. Symp. Inf. Theory, (2012), 86.   Google Scholar

[5]

O. Geil, R. Matsumoto and D. Ruano, Feng-Rao decoding of primary codes,, Finite Fields Appl., 23 (2013), 35.  doi: 10.1016/j.ffa.2013.03.005.  Google Scholar

[6]

O. Geil, C. Munuera, D. Ruano and F. Torres, On the order bounds for one-point AG codes,, Adv. Math. Commun., 5 (2011), 489.  doi: 10.3934/amc.2011.5.489.  Google Scholar

[7]

V. D. Goppa, Codes on algebraic curves,, Sov. Math. Dokl., 24 (1981), 170.   Google Scholar

[8]

T. Høholdt, J. H. van Lint and R. Pellikaan, Algebraic geometry of codes,, in Handbook of Coding Theory, (1998), 871.   Google Scholar

[9]

K. Lee, Bounds for generalized Hamming weights of general AG codes,, Finite Fields Appl., 34 (2015), 265.  doi: 10.1016/j.ffa.2015.02.006.  Google Scholar

[10]

K. Lee, M. Bras-Amorós and M. E. O'Sullivan, Unique decoding of general AG codes,, IEEE Trans. Inf. Theory, 60 (2014), 2038.  doi: 10.1109/TIT.2014.2306816.  Google Scholar

[11]

S. Sakata, H. E. Jensen and T. Høholdt, Generalized Berlekamp-Massey decoding of algebraic-geometric codes up to half the Feng-Rao bound,, IEEE Trans. Inf. Theory, 41 (1995), 1762.  doi: 10.1109/18.476248.  Google Scholar

[12]

H. Stichtenoth, Algebraic Function Fields and Codes,, 2nd edition, (2009).   Google Scholar

[1]

Hannes Bartz, Antonia Wachter-Zeh. Efficient decoding of interleaved subspace and Gabidulin codes beyond their unique decoding radius using Gröbner bases. Advances in Mathematics of Communications, 2018, 12 (4) : 773-804. doi: 10.3934/amc.2018046

[2]

Ismara  Álvarez-Barrientos, Mijail Borges-Quintana, Miguel Angel Borges-Trenard, Daniel Panario. Computing Gröbner bases associated with lattices. Advances in Mathematics of Communications, 2016, 10 (4) : 851-860. doi: 10.3934/amc.2016045

[3]

Arnulf Jentzen, Felix Lindner, Primož Pušnik. On the Alekseev-Gröbner formula in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4475-4511. doi: 10.3934/dcdsb.2019128

[4]

Rolando Mosquera, Aziz Hamdouni, Abdallah El Hamidi, Cyrille Allery. POD basis interpolation via Inverse Distance Weighting on Grassmann manifolds. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1743-1759. doi: 10.3934/dcdss.2019115

[5]

Can Li, Weihua Deng, Lijing Zhao. Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1989-2015. doi: 10.3934/dcdsb.2019026

[6]

Klara Stokes, Maria Bras-Amorós. Associating a numerical semigroup to the triangle-free configurations. Advances in Mathematics of Communications, 2011, 5 (2) : 351-371. doi: 10.3934/amc.2011.5.351

[7]

M. Delgado Pineda, E. A. Galperin, P. Jiménez Guerra. MAPLE code of the cubic algorithm for multiobjective optimization with box constraints. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 407-424. doi: 10.3934/naco.2013.3.407

[8]

Irene I. Bouw, Sabine Kampf. Syndrome decoding for Hermite codes with a Sugiyama-type algorithm. Advances in Mathematics of Communications, 2012, 6 (4) : 419-442. doi: 10.3934/amc.2012.6.419

[9]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[10]

Xin Yu, Guojie Zheng, Chao Xu. The $C$-regularized semigroup method for partial differential equations with delays. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5163-5181. doi: 10.3934/dcds.2016024

[11]

Jianjun Liu, Min Zeng, Yifan Ge, Changzhi Wu, Xiangyu Wang. Improved Cuckoo Search algorithm for numerical function optimization. Journal of Industrial & Management Optimization, 2020, 16 (1) : 103-115. doi: 10.3934/jimo.2018142

[12]

José Ignacio Iglesias Curto. Generalized AG convolutional codes. Advances in Mathematics of Communications, 2009, 3 (4) : 317-328. doi: 10.3934/amc.2009.3.317

[13]

David Julitz. Numerical approximation of atmospheric-ocean models with subdivision algorithm. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 429-447. doi: 10.3934/dcds.2007.18.429

[14]

Gabriella Bretti, Maya Briani, Emiliano Cristiani. An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 379-394. doi: 10.3934/dcdss.2014.7.379

[15]

Karol Mikula, Róbert Špir, Nadine Peyriéras. Numerical algorithm for tracking cell dynamics in 4D biomedical images. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 953-967. doi: 10.3934/dcdss.2015.8.953

[16]

Hongguang Xiao, Wen Tan, Dehua Xiang, Lifu Chen, Ning Li. A study of numerical integration based on Legendre polynomial and RLS algorithm. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 457-464. doi: 10.3934/naco.2017028

[17]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[18]

Joseph D. Fehribach. Using numerical experiments to discover theorems in differential equations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 495-504. doi: 10.3934/dcdsb.2003.3.495

[19]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[20]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]