May  2016, 10(2): 307-319. doi: 10.3934/amc.2016007

Decoding of differential AG codes

1. 

Department of Mathematics Education, Chosun University, Gwangju 61452, South Korea

Received  May 2014 Published  April 2016

The interpolation-based decoding that was developed for general evaluation AG codes is shown to be equally applicable to general differential AG codes. A performance analysis of the decoding algorithm, which is parallel to that of its companion algorithm, is reported. In particular, the decoding capacities of evaluation AG codes and differential AG codes are seen to be interrelated symmetrically. As an interesting special case, a decoding algorithm for classical Goppa codes is presented.
Citation: Kwankyu Lee. Decoding of differential AG codes. Advances in Mathematics of Communications, 2016, 10 (2) : 307-319. doi: 10.3934/amc.2016007
References:
[1]

P. Beelen and T. Høholdt, The decoding of algebraic geometry codes,, in Advances in Algebraic Geometry Codes, (2008), 49.  doi: 10.1142/9789812794017_0002.  Google Scholar

[2]

I. M. Duursma, Majority coset decoding,, IEEE Trans. Inf. Theory, 39 (1993), 1067.  doi: 10.1109/18.256518.  Google Scholar

[3]

G. L. Feng and T. T. N. Rao, Decoding algebraic-geometric codes up to the designed minimum distance,, IEEE Trans. Inf. Theory, 39 (1993), 37.  doi: 10.1109/18.179340.  Google Scholar

[4]

O. Geil, R. Matsumoto and D. Ruano, List decoding algorithms based on Gröbner bases for general one-point AG codes,, in Proc. IEEE Int. Symp. Inf. Theory, (2012), 86.   Google Scholar

[5]

O. Geil, R. Matsumoto and D. Ruano, Feng-Rao decoding of primary codes,, Finite Fields Appl., 23 (2013), 35.  doi: 10.1016/j.ffa.2013.03.005.  Google Scholar

[6]

O. Geil, C. Munuera, D. Ruano and F. Torres, On the order bounds for one-point AG codes,, Adv. Math. Commun., 5 (2011), 489.  doi: 10.3934/amc.2011.5.489.  Google Scholar

[7]

V. D. Goppa, Codes on algebraic curves,, Sov. Math. Dokl., 24 (1981), 170.   Google Scholar

[8]

T. Høholdt, J. H. van Lint and R. Pellikaan, Algebraic geometry of codes,, in Handbook of Coding Theory, (1998), 871.   Google Scholar

[9]

K. Lee, Bounds for generalized Hamming weights of general AG codes,, Finite Fields Appl., 34 (2015), 265.  doi: 10.1016/j.ffa.2015.02.006.  Google Scholar

[10]

K. Lee, M. Bras-Amorós and M. E. O'Sullivan, Unique decoding of general AG codes,, IEEE Trans. Inf. Theory, 60 (2014), 2038.  doi: 10.1109/TIT.2014.2306816.  Google Scholar

[11]

S. Sakata, H. E. Jensen and T. Høholdt, Generalized Berlekamp-Massey decoding of algebraic-geometric codes up to half the Feng-Rao bound,, IEEE Trans. Inf. Theory, 41 (1995), 1762.  doi: 10.1109/18.476248.  Google Scholar

[12]

H. Stichtenoth, Algebraic Function Fields and Codes,, 2nd edition, (2009).   Google Scholar

show all references

References:
[1]

P. Beelen and T. Høholdt, The decoding of algebraic geometry codes,, in Advances in Algebraic Geometry Codes, (2008), 49.  doi: 10.1142/9789812794017_0002.  Google Scholar

[2]

I. M. Duursma, Majority coset decoding,, IEEE Trans. Inf. Theory, 39 (1993), 1067.  doi: 10.1109/18.256518.  Google Scholar

[3]

G. L. Feng and T. T. N. Rao, Decoding algebraic-geometric codes up to the designed minimum distance,, IEEE Trans. Inf. Theory, 39 (1993), 37.  doi: 10.1109/18.179340.  Google Scholar

[4]

O. Geil, R. Matsumoto and D. Ruano, List decoding algorithms based on Gröbner bases for general one-point AG codes,, in Proc. IEEE Int. Symp. Inf. Theory, (2012), 86.   Google Scholar

[5]

O. Geil, R. Matsumoto and D. Ruano, Feng-Rao decoding of primary codes,, Finite Fields Appl., 23 (2013), 35.  doi: 10.1016/j.ffa.2013.03.005.  Google Scholar

[6]

O. Geil, C. Munuera, D. Ruano and F. Torres, On the order bounds for one-point AG codes,, Adv. Math. Commun., 5 (2011), 489.  doi: 10.3934/amc.2011.5.489.  Google Scholar

[7]

V. D. Goppa, Codes on algebraic curves,, Sov. Math. Dokl., 24 (1981), 170.   Google Scholar

[8]

T. Høholdt, J. H. van Lint and R. Pellikaan, Algebraic geometry of codes,, in Handbook of Coding Theory, (1998), 871.   Google Scholar

[9]

K. Lee, Bounds for generalized Hamming weights of general AG codes,, Finite Fields Appl., 34 (2015), 265.  doi: 10.1016/j.ffa.2015.02.006.  Google Scholar

[10]

K. Lee, M. Bras-Amorós and M. E. O'Sullivan, Unique decoding of general AG codes,, IEEE Trans. Inf. Theory, 60 (2014), 2038.  doi: 10.1109/TIT.2014.2306816.  Google Scholar

[11]

S. Sakata, H. E. Jensen and T. Høholdt, Generalized Berlekamp-Massey decoding of algebraic-geometric codes up to half the Feng-Rao bound,, IEEE Trans. Inf. Theory, 41 (1995), 1762.  doi: 10.1109/18.476248.  Google Scholar

[12]

H. Stichtenoth, Algebraic Function Fields and Codes,, 2nd edition, (2009).   Google Scholar

[1]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[2]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[3]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[4]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[5]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[6]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[7]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[8]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[9]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[10]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[11]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[12]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[13]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[14]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[15]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[16]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[19]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[20]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]