-
Previous Article
Codes over local rings of order 16 and binary codes
- AMC Home
- This Issue
-
Next Article
Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes
The geometric structure of relative one-weight codes
1. | Department of Mathematics, Beijing Institute of Technology, Beijing, 100081, China |
2. | Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan, Hubei 430062, China |
References:
[1] |
A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Trans. Inf. Theory, 44 (1998), 2010-2017.
doi: 10.1109/18.705584. |
[2] |
W. D. Chen and T. Kløve, The weight hierarchies of q-ary codes of dimension 4, IEEE Trans. Inf. Theory, 42 (1996), 2265-2272.
doi: 10.1109/18.556621. |
[3] |
Z. H. Liu and W. D. Chen, Notes on the value function, Des. Codes Crypt., 54 (2010), 11-19.
doi: 10.1007/s10623-009-9305-z. |
[4] |
Z. H. Liu, W. D. Chen, Z. M. Sun and X. Y. Zeng, Further results on support weights of certain subcodes, Des. Codes Crypt., 61 (2011), 119-129.
doi: 10.1007/s10623-010-9442-4. |
[5] |
Z. H. Liu and X. W. Wu, On relative constant-weight codes, Des. Codes Crypt., 75 (2015), 127-144.
doi: 10.1007/s10623-013-9896-2. |
[6] |
Y. Luo, C. Mitrpant, A. J. H. Vinck and K. Chen, Some new characters on the wire-tap channel of type II, IEEE Trans. Inf. Theory, 51 (2005), 1222-1229.
doi: 10.1109/TIT.2004.842763. |
[7] |
F. J. MacWilliams, N. J. A. Sloane, The Theory of Error Correcting Codes, North Holland, Amsterdam, 1977. |
[8] |
V. K. Wei, Generalized Hamming weight for linear codes, IEEE Trans. Inf. Theory, 37 (1991), 1412-1418.
doi: 10.1109/18.133259. |
[9] |
J. A. Wood, Relative one-weight linear codes, Des. Codes Crypt., 72 (2014), 331-344.
doi: 10.1007/s10623-012-9769-0. |
[10] |
J. Yuan and C. Ding, Secret sharing schemes from three classes of linear codes, IEEE Trans. Inf. Theory, 52 (2006), 206-212.
doi: 10.1109/TIT.2005.860412. |
show all references
References:
[1] |
A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Trans. Inf. Theory, 44 (1998), 2010-2017.
doi: 10.1109/18.705584. |
[2] |
W. D. Chen and T. Kløve, The weight hierarchies of q-ary codes of dimension 4, IEEE Trans. Inf. Theory, 42 (1996), 2265-2272.
doi: 10.1109/18.556621. |
[3] |
Z. H. Liu and W. D. Chen, Notes on the value function, Des. Codes Crypt., 54 (2010), 11-19.
doi: 10.1007/s10623-009-9305-z. |
[4] |
Z. H. Liu, W. D. Chen, Z. M. Sun and X. Y. Zeng, Further results on support weights of certain subcodes, Des. Codes Crypt., 61 (2011), 119-129.
doi: 10.1007/s10623-010-9442-4. |
[5] |
Z. H. Liu and X. W. Wu, On relative constant-weight codes, Des. Codes Crypt., 75 (2015), 127-144.
doi: 10.1007/s10623-013-9896-2. |
[6] |
Y. Luo, C. Mitrpant, A. J. H. Vinck and K. Chen, Some new characters on the wire-tap channel of type II, IEEE Trans. Inf. Theory, 51 (2005), 1222-1229.
doi: 10.1109/TIT.2004.842763. |
[7] |
F. J. MacWilliams, N. J. A. Sloane, The Theory of Error Correcting Codes, North Holland, Amsterdam, 1977. |
[8] |
V. K. Wei, Generalized Hamming weight for linear codes, IEEE Trans. Inf. Theory, 37 (1991), 1412-1418.
doi: 10.1109/18.133259. |
[9] |
J. A. Wood, Relative one-weight linear codes, Des. Codes Crypt., 72 (2014), 331-344.
doi: 10.1007/s10623-012-9769-0. |
[10] |
J. Yuan and C. Ding, Secret sharing schemes from three classes of linear codes, IEEE Trans. Inf. Theory, 52 (2006), 206-212.
doi: 10.1109/TIT.2005.860412. |
[1] |
Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433 |
[2] |
Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. On the weight distribution of the cosets of MDS codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021042 |
[3] |
Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023 |
[4] |
Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395 |
[5] |
Gerardo Vega, Jesús E. Cuén-Ramos. The weight distribution of families of reducible cyclic codes through the weight distribution of some irreducible cyclic codes. Advances in Mathematics of Communications, 2020, 14 (3) : 525-533. doi: 10.3934/amc.2020059 |
[6] |
Jisang Yoo. Decomposition of infinite-to-one factor codes and uniqueness of relative equilibrium states. Journal of Modern Dynamics, 2018, 13: 271-284. doi: 10.3934/jmd.2018021 |
[7] |
Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021002 |
[8] |
Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008 |
[9] |
Irene Márquez-Corbella, Edgar Martínez-Moro. Algebraic structure of the minimal support codewords set of some linear codes. Advances in Mathematics of Communications, 2011, 5 (2) : 233-244. doi: 10.3934/amc.2011.5.233 |
[10] |
Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063 |
[11] |
Alain Chenciner. The angular momentum of a relative equilibrium. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1033-1047. doi: 10.3934/dcds.2013.33.1033 |
[12] |
Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032 |
[13] |
Kristian Bjerklöv, Russell Johnson. Minimal subsets of projective flows. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 493-516. doi: 10.3934/dcdsb.2008.9.493 |
[14] |
Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039 |
[15] |
Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006 |
[16] |
Jie Geng, Huazhang Wu, Patrick Solé. On one-lee weight and two-lee weight $ \mathbb{Z}_2\mathbb{Z}_4[u] $ additive codes and their constructions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021046 |
[17] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems and Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
[18] |
Chengju Li, Sunghan Bae, Shudi Yang. Some two-weight and three-weight linear codes. Advances in Mathematics of Communications, 2019, 13 (1) : 195-211. doi: 10.3934/amc.2019013 |
[19] |
Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439 |
[20] |
Therese Mur, Hernan R. Henriquez. Relative controllability of linear systems of fractional order with delay. Mathematical Control and Related Fields, 2015, 5 (4) : 845-858. doi: 10.3934/mcrf.2015.5.845 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]