-
Previous Article
On the error distance of extended Reed-Solomon codes
- AMC Home
- This Issue
-
Next Article
Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code
Nearly perfect sequences with arbitrary out-of-phase autocorrelation
1. | Department of Mathematics, Hacettepe University, Beytepe, 06800, Ankara |
References:
[1] |
T. Beth, D. Jungnickel and H. Lenz, Design Theory,, 2nd edition, (1999).
|
[2] |
B. W. Brock, Hermitian congruence and the existence and completion of generalized Hadamard matrices,, J. Combin. Theory Ser. A, 49 (1988), 233.
doi: 10.1016/0097-3165(88)90054-4. |
[3] |
Y. M. Chee, Y. Tan and Y. Zhou, Almost $p$-ary perfect sequences,, in Sequences and their Applications - SETA 2010, (2010), 399.
doi: 10.1007/978-3-642-15874-2_34. |
[4] |
T. Helleseth and P. V. Kumar, Sequences with low correlation,, in Handbook of Coding Theory, ().
|
[5] |
D. Jungnickel and A. Pott, Perfect and almost perfect sequences,, Discrete Appl. Math., 95 (1999), 331.
doi: 10.1016/S0166-218X(99)00085-2. |
[6] |
S. L. Ma and W. S. Ng, On non-existence of perfect and nearly perfect sequences,, Int. J. Inf. Coding Theory, 1 (2009), 15.
doi: 10.1504/IJICOT.2009.024045. |
[7] |
S. L. Ma and A. Pott, Relative difference sets, planar functions, and generalized Hadamard matrices,, J. Algebra, 175 (1995), 505.
doi: 10.1006/jabr.1995.1198. |
[8] |
S. L. Ma and B. Schmidt, On $(p^a,p,p^a,p^{a-1})$-relative difference sets,, Des. Codes Crypt., 6 (1995), 57.
doi: 10.1007/BF01390771. |
[9] |
F. Özbudak, O. Yayla and C. C. Yíldírím, Nonexistence of certain almost $p$-ary perfect sequences,, in Sequences and their Applications - SETA 2012, (2012), 13.
doi: 10.1007/978-3-642-30615-0_2. |
[10] |
A. Pott, Finite Geometry and Character Theory,, Springer-Verlag, (1995).
|
[11] |
R. J. Turyn, Character sums and difference sets,, Pacific J. Math., 15 (1965), 319.
|
[12] |
A. Winterhof, O. Yayla and V. Ziegler, Non-existence of some nearly perfect sequences, near Butson-Hadamard matrices, and near conference matrices,, preprint, (). Google Scholar |
show all references
References:
[1] |
T. Beth, D. Jungnickel and H. Lenz, Design Theory,, 2nd edition, (1999).
|
[2] |
B. W. Brock, Hermitian congruence and the existence and completion of generalized Hadamard matrices,, J. Combin. Theory Ser. A, 49 (1988), 233.
doi: 10.1016/0097-3165(88)90054-4. |
[3] |
Y. M. Chee, Y. Tan and Y. Zhou, Almost $p$-ary perfect sequences,, in Sequences and their Applications - SETA 2010, (2010), 399.
doi: 10.1007/978-3-642-15874-2_34. |
[4] |
T. Helleseth and P. V. Kumar, Sequences with low correlation,, in Handbook of Coding Theory, ().
|
[5] |
D. Jungnickel and A. Pott, Perfect and almost perfect sequences,, Discrete Appl. Math., 95 (1999), 331.
doi: 10.1016/S0166-218X(99)00085-2. |
[6] |
S. L. Ma and W. S. Ng, On non-existence of perfect and nearly perfect sequences,, Int. J. Inf. Coding Theory, 1 (2009), 15.
doi: 10.1504/IJICOT.2009.024045. |
[7] |
S. L. Ma and A. Pott, Relative difference sets, planar functions, and generalized Hadamard matrices,, J. Algebra, 175 (1995), 505.
doi: 10.1006/jabr.1995.1198. |
[8] |
S. L. Ma and B. Schmidt, On $(p^a,p,p^a,p^{a-1})$-relative difference sets,, Des. Codes Crypt., 6 (1995), 57.
doi: 10.1007/BF01390771. |
[9] |
F. Özbudak, O. Yayla and C. C. Yíldírím, Nonexistence of certain almost $p$-ary perfect sequences,, in Sequences and their Applications - SETA 2012, (2012), 13.
doi: 10.1007/978-3-642-30615-0_2. |
[10] |
A. Pott, Finite Geometry and Character Theory,, Springer-Verlag, (1995).
|
[11] |
R. J. Turyn, Character sums and difference sets,, Pacific J. Math., 15 (1965), 319.
|
[12] |
A. Winterhof, O. Yayla and V. Ziegler, Non-existence of some nearly perfect sequences, near Butson-Hadamard matrices, and near conference matrices,, preprint, (). Google Scholar |
[1] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[2] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]