Advanced Search
Article Contents
Article Contents

On the error distance of extended Reed-Solomon codes

Abstract Related Papers Cited by
  • It is well known that the main problem of decoding the extended Reed-Solomon codes is computing the error distance of a word. Using some algebraic constructions, we are able to determine the error distance of words whose degrees are $k+1$ and $k+2$ to the extended Reed-Solomon codes. As a corollary, we can simply get the results of Zhang-Fu-Liao on the deep hole problem of Reed-Solomon codes.
    Mathematics Subject Classification: 94B35;11C08.


    \begin{equation} \\ \end{equation}
  • [1]

    E. Berlekamp and L. Welch, Error correction of algebraic block codes, US Patent Number 4633470, 1986.


    A. Cafure, G. Matera and M. Privitelli, Singularities of symmetric hypersurfaces and an application to Reed-Solomon codes, Adv. Math. Commun., 6 (2012), 69-94.doi: 10.3934/amc.2012.6.69.


    Q. Cheng, J. Li and J. Zhuang, On determining deep holes of generalized Reed-Solomon codes, in Algorithms and Computation, Springer, Berlin, 2013, 100-110.doi: 10.1007/978-3-642-45030-3_10.


    Q. Cheng and E. Murray, On deciding deep holes of Reed-Solomon codes, in Proc. TAMC 2007, Springer, 2007, 296-305.doi: 10.1007/978-3-540-72504-6_27.


    Q. Cheng and D. Wan, On the list and bounded distance decodability of Reed-Solomon codes, SIAM J. Comput., 37 (2007), 195-209.doi: 10.1137/S0097539705447335.


    Q. Cheng and D. Wan, Complexity of decoding positive-rate Reed-Solomon codes, IEEE Trans. Inf. Theory, 56 (2010), 5217-5222.doi: 10.1109/TIT.2010.2060234.


    V. Guruswami and M. Sudan, Improved decoding of Reed-Solomon and algebraic-geometry codes, IEEE Trans. Inf. Theory, 45 (1995), 1757-1767.doi: 10.1109/18.782097.


    V. Guruswami and A. Vardy, A Maximum-likelihood decoding of Reed-Solomon codes is NP-Hard, IEEE Trans. Inf. Theory, 51 (2005), 2249-2256.doi: 10.1109/TIT.2005.850102.


    Y. J. Li and D. Wan, On error distance of Reed-Solomon codes, Sci. China Math., 51 (2008), 1982-1988.doi: 10.1007/s11425-008-0066-3.


    J. Y. Li and D. Wan, On the subset sum problem over finite fields, Finite Fields Appl., 14 (2008), 911-929.doi: 10.1016/j.ffa.2008.05.003.


    Q. Liao, On Reed-Solomon Codes, Chinese Ann. Math. Ser. B, 32 (2011), 89-98.doi: 10.1007/s11401-010-0622-3.


    R. Lidl and H. Niederreiter, Finite Fields, 2nd edtion, Cambridge Univ. Press. 1997.


    M. Sudan, Decoding of Reed-Solomon codes beyond the error-correction bound , J. Complexity, 13 (2007), 180-193.doi: 10.1006/jcom.1997.0439.


    R. Wu and S. Hong, On deep holes of generalized Reed-Solomon codes, preprint, arXiv:1205.7016


    J. Zhang, F. W. Fu and Q. Y. Liao, Deep holes of generalized Reed-Solomon codes (in Chinese), Sci. Sin. Math., 43 (2013), 727-740.


    G. Zhu and D. Wan, Computing error distance of Reed-Solomon codes, in Theory and Applications of Models of Computation, Springer, Berlin, 2012, 214-224.doi: 10.1007/978-3-642-29952-0_24.

  • 加载中

Article Metrics

HTML views() PDF downloads(232) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint