\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A class of $p$-ary cyclic codes and their weight enumerators

Abstract Related Papers Cited by
  • Let $\mathbb{F}_{p^m}$ be a finite field with $p^m$ elements, where $p$ is an odd prime, and $m$ is a positive integer. Let $h_1(x)$ and $h_2(x)$ be minimal polynomials of $-\pi^{-1}$ and $\pi^{-\frac{p^k+1}{2}}$ over $\mathbb{F}_p$, respectively, where $\pi $ is a primitive element of $\mathbb{F}_{p^m}$, and $k$ is a positive integer such that $\frac{m}{\gcd(m,k)}\geq 3$. In [23], Zhou et al. obtained the weight distribution of a class of cyclic codes over $\mathbb{F}_p$ with parity-check polynomial $h_1(x)h_2(x)$ in the following two cases:
        • $k$ is even and $\gcd(m,k)$ is odd;
        • $\frac{m}{\gcd(m,k)}$ and $\frac{k}{\gcd(m,k)}$ are both odd. In this paper, we further investigate this class of cyclic codes over $\mathbb{F}_p$ in other cases. We determine the weight distribution of this class of cyclic codes.
    Mathematics Subject Classification: Primary: 11T71; Secondary: 94B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Delsarte, On subfield subcodes of modified Reed-Solomon codes, IEEE Trans. Inf. Theory, 21 (1975), 575-576.

    [2]

    C. Ding, Y. Liu, C. Ma and L. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 57 (2011), 8000-8006.doi: 10.1109/TIT.2011.2165314.

    [3]

    C. Ding and J. Yang, Hamming weight in irrecducible codes, Discrete Math., 313 (2013), 434-446.doi: 10.1016/j.disc.2012.11.009.

    [4]

    K. Feng and J. Luo, Weight distribution of some reducible cyclic codes, Finite Fields Appl., 14 (2008), 390-409.doi: 10.1016/j.ffa.2007.03.003.

    [5]

    T. Feng, On cyclic codes of length $2^{2^r}-1$ with two zeros whose dual codes have three weights, Des. Codes Crypt., 62 (2012), 253-258.doi: 10.1007/s10623-011-9514-0.

    [6]

    R. Lidl and H. Niederreiter, Finite Fields, Cambridge Univ. Press, 1983.

    [7]

    J. Luo and K. Feng, Cyclic codes and sequences from generalized Coulter-Matthews function, IEEE Trans. Inf. Theory, 54 (2008), 5345-5353.doi: 10.1109/TIT.2008.2006394.

    [8]

    J. Luo and K. Feng, On the weight distributions of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.doi: 10.1109/TIT.2008.2006424.

    [9]

    C. Ma, L. Zeng, Y. Liu, D. Feng and C. Ding, The weight enumerator of a class of cyclic codes}}, IEEE Trans. Inf. Theory, 57 (2011), 397-402.doi: 10.1109/TIT.2010.2090272.

    [10]

    F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1997.

    [11]

    A. Rao and N. Pinnawala, A family of two-weight irreducible cyclic codes, IEEE Trans. Inf. Theory, 56 (2010), 2568-2570.doi: 10.1109/TIT.2010.2046201.

    [12]

    G. Vega, The weight distribution of an extended class of reducible cyclic codes, IEEE Trans. Inf. Theory, 58 (2012), 4862-4869.doi: 10.1109/TIT.2012.2193376.

    [13]

    G. Vega and J. Wolfmann, New classes of $2$-weight cyclic codes, Des. Codes Crypt., 42 (2007), 327-334.doi: 10.1007/s10623-007-9038-9.

    [14]

    B. Wang, C. Tang, Y. Qi, Y. Yang and M. Xu, The weight distributions of cyclic codes and elliptic curves, IEEE Trans. Inf. Theory, 58 (2012), 7253-7259.doi: 10.1109/TIT.2012.2210386.

    [15]

    M. Xiong, The weight distributions of a class of cyclic codes, Finite Fields Appl., 18 (2012), 933-945.doi: 10.1016/j.ffa.2012.06.001.

    [16]

    M. Xiong, The weight distributions of a class of cyclic codes II, Des. Codes Crypt., 72 (2014), 511-528.doi: 10.1007/s10623-012-9785-0.

    [17]

    M. Xiong, The weight distributions of a class of cyclic codes III, Finite Fields Appl., 21 (2013), 84-96.doi: 10.1016/j.ffa.2013.01.004.

    [18]

    L. Yu and H. Liu, The weight distribution of a family of p-ary cyclic codes, Des. Codes Crypt., 78 (2016), 731-745.doi: 10.1007/s10623-014-0029-3.

    [19]

    X. Zeng, L. Hu, W. Jiang, Q. Yue and X. Cao, The weight distribution of a class of $p$-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.doi: 10.1016/j.ffa.2009.12.001.

    [20]

    X. Zeng, J. Shan and L. Hu, A triple-error-correcting cyclic code from the Gold and Kasami-Welch APN power functions, Finite Fields Appl., 18 (2012), 70-92.doi: 10.1016/j.ffa.2011.06.005.

    [21]

    D. Zheng, X. Wang, L. Yu and H. Liu, The weight enumerators of several classes of $p$-ary cyclic codes, Discrete Math., 338 (2015), 1264-1276.doi: 10.1016/j.disc.2015.02.005.

    [22]

    D. Zheng, X. Wang, X. Zeng and L. Hu, The weight distribution of a family of $p$-ary cyclic codes, Des. Codes Crypt., 75 (2015), 263-275.doi: 10.1007/s10623-013-9908-2.

    [23]

    Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.doi: 10.1016/j.ffa.2013.08.005.

    [24]

    Z. Zhou, C. Ding, J. Luo and A. Zhang, A family of five-weight cyclic codes and their weight enumerators, IEEE Trans. Inf. Theory, 59 (2013), 6674-6682.doi: 10.1109/TIT.2013.2267722.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return