May  2016, 10(2): 459-474. doi: 10.3934/amc.2016018

Cyclic and BCH codes whose minimum distance equals their maximum BCH bound

1. 

Departamento de Matemáticas, Universidad de Murcia, Spain, Spain

2. 

Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana seccional Cali, Colombia

Received  October 2014 Revised  September 2015 Published  April 2016

In this paper we study the family of cyclic codes such that its minimum distance reaches the maximum of its BCH bounds. We also show a way to construct cyclic codes with that property by means of computations of some divisors of a polynomial of the form $x^n-1$. We apply our results to the study of those BCH codes $C$, with designed distance $\delta$, that have minimum distance $d(C)=\delta$. Finally, we present some examples of new binary BCH codes satisfying that condition. To do this, we make use of two related tools: the discrete Fourier transform and the notion of apparent distance of a code, originally defined for multivariate abelian codes.
Citation: José Joaquín Bernal, Diana H. Bueno-Carreño, Juan Jacobo Simón. Cyclic and BCH codes whose minimum distance equals their maximum BCH bound. Advances in Mathematics of Communications, 2016, 10 (2) : 459-474. doi: 10.3934/amc.2016018
References:
[1]

P. Camion, Abelian codes,, MRC Tech. Sum. Rep. 1059, (1059).   Google Scholar

[2]

P. Charpin, Open problems on cyclic codes,, in Handbook of Coding Theory, (1998), 963.   Google Scholar

[3]

R. T. Chien and D. M. Choy, Algebraic generalization of BCH-Goppa-Helgert codes,, IEEE Trans. Inf. Theory, (1975), 70.   Google Scholar

[4]

, GAP - Groups, Algorithms, Programming - a system for computational discrete algebra,, , ().   Google Scholar

[5]

W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes,, Cambridge Univ. Press, (2003).  doi: 10.1017/CBO9780511807077.  Google Scholar

[6]

F. J. Macwilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,, North-Holland, (1977).   Google Scholar

[7]

J. H. Van Lint and R. M. Wilson, On the minimum distance of cyclic codes,, IEEE Trans. Inf. Theory, 32 (1986), 23.  doi: 10.1109/TIT.1986.1057134.  Google Scholar

show all references

References:
[1]

P. Camion, Abelian codes,, MRC Tech. Sum. Rep. 1059, (1059).   Google Scholar

[2]

P. Charpin, Open problems on cyclic codes,, in Handbook of Coding Theory, (1998), 963.   Google Scholar

[3]

R. T. Chien and D. M. Choy, Algebraic generalization of BCH-Goppa-Helgert codes,, IEEE Trans. Inf. Theory, (1975), 70.   Google Scholar

[4]

, GAP - Groups, Algorithms, Programming - a system for computational discrete algebra,, , ().   Google Scholar

[5]

W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes,, Cambridge Univ. Press, (2003).  doi: 10.1017/CBO9780511807077.  Google Scholar

[6]

F. J. Macwilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,, North-Holland, (1977).   Google Scholar

[7]

J. H. Van Lint and R. M. Wilson, On the minimum distance of cyclic codes,, IEEE Trans. Inf. Theory, 32 (1986), 23.  doi: 10.1109/TIT.1986.1057134.  Google Scholar

[1]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[2]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[3]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[4]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[5]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[6]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[7]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[8]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[9]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[10]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[11]

Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053

[12]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[13]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[14]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[15]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[16]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[17]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[18]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

[19]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

[20]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (1)

[Back to Top]