Citation: |
[1] |
J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math. Z., 60 (1954), 156-186. |
[2] |
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.doi: 10.1006/jsco.1996.0125. |
[3] |
R. H. Bruck and R. C. Bose, The construction of translation planes from projectives spaces, J. Algebra, 1 (1964), 85-102. |
[4] |
M. Cordero and G. P. Wene, A survey of finite semifields, Discrete Math., 208/209 (1999), 125-137.doi: 10.1016/S0012-365X(99)00068-0. |
[5] |
P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.doi: 10.1016/0097-3165(78)90015-8. |
[6] | |
[7] |
U. Dempwolff, Semifield planes of order 81, J. Geom., 89 (2008-10), 1-16. doi: 10.1007/s00022-008-1995-2. |
[8] |
E. M. Gabidulin, Theory of codes with maximal rank distance, Probl. Inform. Transm., 21 (1985), 1-12. |
[9] |
E. M. Gabidulin and N. I. Pilipchuk, Symmetric matrices and codes correcting rank errors beyond the $\lfloor \frac{d-1}{2} \rfloor$ bound, Discrete Appl. Math., 154 (2006), 305-312.doi: 10.1016/j.dam.2005.03.012. |
[10] |
L.-K. Hua, A theorem on matrices over a sfield and its applications, Acta Math. Sinica, 1 (1951), 109-163. |
[11] |
M. Johnson, V. Jha and M. Biliotti, Handbook of Finite Translation Planes, Chapman Hall/CRC, 2007.doi: 10.1201/9781420011142. |
[12] |
W. M. Kantor, Finite semifields, in Finite Geometries, Groups, and Computation, Walter de Gruyter, Berlin, 2006, 103-114. |
[13] |
N. Knarr, Quasifields of symplectic translation planes, J. Combin. Theory Ser. A, 116 (2009), 1080-1086.doi: 10.1016/j.jcta.2008.11.012. |
[14] |
D. E. Knuth, Finite semifields and projective planes, J. Algebra, 2 (1965), 182-217. |
[15] |
M. Lavrauw and O. Polverino, Finite semifields, in Current Research Topocs in Galois Geometry (eds. J. de Beule and L. Storme), NOVA Acad. Publ., New York, 2011. |
[16] |
G. Marino and O. Polverino, On isotopisms and strong isotopisms of commutative presemifields, J. Algebr. Combin., 36 (2012), 247-261.doi: 10.1007/s10801-011-0334-0. |
[17] |
K. Morrison, Equivalence for rank-metric and matrix codes and automorphism groups of Gabidulin codes, IEEE Trans. Inform. Theory, 60 (2014), 7035-7046.doi: 10.1109/TIT.2014.2359198. |
[18] |
G. Nebe and W. Willems, On self-dual MRD codes, Adv. Math. Comm., 10 (2016), 633-642.doi: 10.3934/amc.2016031. |
[19] |
I. F. Rúa, E. F. Combarro and J. Ranilla, Classification of semifields of order 64, J. Algebra, 322 (2009), 4011-4029.doi: 10.1016/j.jalgebra.2009.02.020. |
[20] |
I. F. Rúa, E. F. Combarro and J. Ranilla, Determination of division algebras with 243 elements, Finite Fields Appl., 18 (2012), 1148-1155. |
[21] |
K.-U. Schmidt, Symmetric bilinear forms over finite fields with applications to coding theory, J. Algebr. Combin., 42 (2015), 635-670.doi: 10.1007/s10801-015-0595-0. |
[22] |
R. J. Walker, Determination of division algebras with 32 elements, Proc. Sympos. Appl. Math., 75 (1962), 83-85. |
[23] |
Z.-X. Wan, A proof of the automorphisms of linear groups over a sfield of characteristic 2, Sci. Sinica, 11 (1962), 1183-1194. |
[24] |
Z.-X. Wan, Geometry of Matrices, World Scientific, Singapore, 1996.doi: 10.1142/9789812830234. |
[25] |
S. Yang and T. Honold, Good random matrices over finite fields, Adv. Math. Commun., 6 (2012), 203-227.doi: 10.3934/amc.2012.6.203. |
[26] |
H. Zassenhaus, Über endliche Fastkörper, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 187-220.doi: 10.1007/BF02940723. |
[27] |
, href ="http://www.math.uni-kiel.de/geometrie/klein/math/geometry.html" target="_blank">http://www.math.uni-kiel.de/geometrie/klein/math/geometry.html |