August  2016, 10(3): 511-524. doi: 10.3934/amc.2016022

Construction of 3-designs using $(1,\sigma)$-resolution

1. 

Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann-Straße 9, 45127 Essen, Germany

Received  May 2015 Revised  November 2015 Published  August 2016

The paper deals with recursive constructions for simple 3-designs based on other 3-designs having $(1, \sigma)$-resolution. The concept of $(1, \sigma)$-resolution may be viewed as a generalization of the parallelism for designs. We show the constructions and their applications to produce many previously unknown infinite families of simple 3-designs. We also include a discussion of $(1,\sigma)$-resolvability of the constructed designs.
Citation: Tran van Trung. Construction of 3-designs using $(1,\sigma)$-resolution. Advances in Mathematics of Communications, 2016, 10 (3) : 511-524. doi: 10.3934/amc.2016022
References:
[1]

R. D. Baker, Partitioning the planes of $AG_{2m}(2)$ into 2-designs,, Discr. Math., 15 (1976), 205.   Google Scholar

[2]

Z. Baranyai, On the factorization of the complete uniform hypergraph,, in Proc. Erdös-Colloquium Keszthely, (1973), 91.   Google Scholar

[3]

T. Beth, D. Jungnickel and H. Lenz, Design Theory,, Cambridge Univ. Press, (1986).   Google Scholar

[4]

J. Bierbrauer, Some friends of Alltop's designs $4-(2^f+1,5,5)$,, J. Combin. Math. Combin. Comput., 36 (2001), 43.   Google Scholar

[5]

J. Bierbrauer and T. van Trung, Shadow and shade of designs $4-(2^f+1,6,10)$,, unpublished manuscript, (1994).   Google Scholar

[6]

R. C. Bose, A note on the resolvability of balanced incomplete block designs,, Sankhyā, 6 (1942), 105.   Google Scholar

[7]

C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs,, CRC Press, (1996).  doi: 10.1201/9781420049954.  Google Scholar

[8]

L. H. M. E. Driessen, $t$-designs, $t\geq 3$, Technical Report,, Dep. Math., (1978).   Google Scholar

[9]

M. Jimbo, Y. Kunihara, R. Laue and M. Sawa, Unifying some known infinite families of combinatorial 3-designs,, J. Combin. Theory Ser. A, 118 (2011), 1072.  doi: 10.1016/j.jcta.2010.10.007.  Google Scholar

[10]

D. Jungnickel and S. A. Vanstone, On resolvable designs $S_3(3;4,v)$,, J. Combin. Theory A, 43 (1986), 334.  doi: 10.1016/0097-3165(86)90073-7.  Google Scholar

[11]

R. Laue, Resolvable $t$-designs,, Des. Codes Cryptogr., 32 (2004), 277.  doi: 10.1023/B:DESI.0000029230.50742.8f.  Google Scholar

[12]

K. T. Phelps, D. R. Stinson and S. A. Vanstone, The existence of simple $S_3(3,4,v)$,, Discrete Math., 77 (1989), 255.  doi: 10.1016/0012-365X(89)90364-6.  Google Scholar

[13]

S. S. Shrikhande and D. Raghavarao, A method of construction of incomplete block designs,, Sankhyā A, 25 (1963), 399.   Google Scholar

[14]

S. S. Shrikhande and D. Raghavarao, Affine $\alpha$-resolvable incomplete block designs,, in Contributions to Statistics, (1963), 471.   Google Scholar

[15]

D. R. Stinson, C. M. Swanson and T. van Trung, A new look at an old construction: Constructing (simple) 3-designs from resolvable 2-designs,, Discrete Math., 325 (2014), 23.  doi: 10.1016/j.disc.2014.02.009.  Google Scholar

[16]

T. van Trung, Recursive constructions for 3-designs and resolvable 3-designs,, J. Statist. Plann. Inference, 95 (2001), 341.  doi: 10.1016/S0378-3758(00)00308-6.  Google Scholar

[17]

T. van Trung, Construction of 3-designs using parallelism,, J. Geom., 67 (2000), 223.  doi: 10.1007/BF01220313.  Google Scholar

show all references

References:
[1]

R. D. Baker, Partitioning the planes of $AG_{2m}(2)$ into 2-designs,, Discr. Math., 15 (1976), 205.   Google Scholar

[2]

Z. Baranyai, On the factorization of the complete uniform hypergraph,, in Proc. Erdös-Colloquium Keszthely, (1973), 91.   Google Scholar

[3]

T. Beth, D. Jungnickel and H. Lenz, Design Theory,, Cambridge Univ. Press, (1986).   Google Scholar

[4]

J. Bierbrauer, Some friends of Alltop's designs $4-(2^f+1,5,5)$,, J. Combin. Math. Combin. Comput., 36 (2001), 43.   Google Scholar

[5]

J. Bierbrauer and T. van Trung, Shadow and shade of designs $4-(2^f+1,6,10)$,, unpublished manuscript, (1994).   Google Scholar

[6]

R. C. Bose, A note on the resolvability of balanced incomplete block designs,, Sankhyā, 6 (1942), 105.   Google Scholar

[7]

C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs,, CRC Press, (1996).  doi: 10.1201/9781420049954.  Google Scholar

[8]

L. H. M. E. Driessen, $t$-designs, $t\geq 3$, Technical Report,, Dep. Math., (1978).   Google Scholar

[9]

M. Jimbo, Y. Kunihara, R. Laue and M. Sawa, Unifying some known infinite families of combinatorial 3-designs,, J. Combin. Theory Ser. A, 118 (2011), 1072.  doi: 10.1016/j.jcta.2010.10.007.  Google Scholar

[10]

D. Jungnickel and S. A. Vanstone, On resolvable designs $S_3(3;4,v)$,, J. Combin. Theory A, 43 (1986), 334.  doi: 10.1016/0097-3165(86)90073-7.  Google Scholar

[11]

R. Laue, Resolvable $t$-designs,, Des. Codes Cryptogr., 32 (2004), 277.  doi: 10.1023/B:DESI.0000029230.50742.8f.  Google Scholar

[12]

K. T. Phelps, D. R. Stinson and S. A. Vanstone, The existence of simple $S_3(3,4,v)$,, Discrete Math., 77 (1989), 255.  doi: 10.1016/0012-365X(89)90364-6.  Google Scholar

[13]

S. S. Shrikhande and D. Raghavarao, A method of construction of incomplete block designs,, Sankhyā A, 25 (1963), 399.   Google Scholar

[14]

S. S. Shrikhande and D. Raghavarao, Affine $\alpha$-resolvable incomplete block designs,, in Contributions to Statistics, (1963), 471.   Google Scholar

[15]

D. R. Stinson, C. M. Swanson and T. van Trung, A new look at an old construction: Constructing (simple) 3-designs from resolvable 2-designs,, Discrete Math., 325 (2014), 23.  doi: 10.1016/j.disc.2014.02.009.  Google Scholar

[16]

T. van Trung, Recursive constructions for 3-designs and resolvable 3-designs,, J. Statist. Plann. Inference, 95 (2001), 341.  doi: 10.1016/S0378-3758(00)00308-6.  Google Scholar

[17]

T. van Trung, Construction of 3-designs using parallelism,, J. Geom., 67 (2000), 223.  doi: 10.1007/BF01220313.  Google Scholar

[1]

Josselin Garnier, George Papanicolaou. Resolution enhancement from scattering in passive sensor imaging with cross correlations. Inverse Problems & Imaging, 2014, 8 (3) : 645-683. doi: 10.3934/ipi.2014.8.645

[2]

Angelo Favini, Rabah Labbas, Keddour Lemrabet, Stéphane Maingot, Hassan D. Sidibé. Resolution and optimal regularity for a biharmonic equation with impedance boundary conditions and some generalizations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4991-5014. doi: 10.3934/dcds.2013.33.4991

[3]

Niklas Hartung. Efficient resolution of metastatic tumor growth models by reformulation into integral equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 445-467. doi: 10.3934/dcdsb.2015.20.445

[4]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[5]

Guillaume Bal, Jiaming Chen, Anthony B. Davis. Reconstruction of cloud geometry from high-resolution multi-angle images. Inverse Problems & Imaging, 2018, 12 (2) : 261-280. doi: 10.3934/ipi.2018011

[6]

Amine Laghrib, Abdelkrim Chakib, Aissam Hadri, Abdelilah Hakim. A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 415-442. doi: 10.3934/dcdsb.2019188

[7]

Lluís Alsedà, Sylvie Ruette. On the set of periods of sigma maps of degree 1. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4683-4734. doi: 10.3934/dcds.2015.35.4683

[8]

Elisavet Konstantinou, Aristides Kontogeorgis. Some remarks on the construction of class polynomials. Advances in Mathematics of Communications, 2011, 5 (1) : 109-118. doi: 10.3934/amc.2011.5.109

[9]

Ernesto Aranda, Pablo Pedregal. Constrained envelope for a general class of design problems. Conference Publications, 2003, 2003 (Special) : 30-41. doi: 10.3934/proc.2003.2003.30

[10]

Kwangseok Choe, Jongmin Han, Chang-Shou Lin. Bubbling solutions for the Chern-Simons gauged $O(3)$ sigma model in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2703-2728. doi: 10.3934/dcds.2014.34.2703

[11]

Xin Li, Chunyou Sun, Na Zhang. Dynamics for a non-autonomous degenerate parabolic equation in $\mathfrak{D}_{0}^{1}(\Omega, \sigma)$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7063-7079. doi: 10.3934/dcds.2016108

[12]

Daniele Bartoli, Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. A 3-cycle construction of complete arcs sharing $(q+3)/2$ points with a conic. Advances in Mathematics of Communications, 2013, 7 (3) : 319-334. doi: 10.3934/amc.2013.7.319

[13]

H. T. Banks, D. Rubio, N. Saintier, M. I. Troparevsky. Optimal design for parameter estimation in EEG problems in a 3D multilayered domain. Mathematical Biosciences & Engineering, 2015, 12 (4) : 739-760. doi: 10.3934/mbe.2015.12.739

[14]

Jae Man Park, Gang Uk Hwang, Boo Geum Jung. Design and analysis of an adaptive guard channel based CAC scheme in a 3G-WLAN integrated network. Journal of Industrial & Management Optimization, 2010, 6 (3) : 621-639. doi: 10.3934/jimo.2010.6.621

[15]

Tuan Anh Dao, Michael Reissig. $ L^1 $ estimates for oscillating integrals and their applications to semi-linear models with $ \sigma $-evolution like structural damping. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5431-5463. doi: 10.3934/dcds.2019222

[16]

Noam Presman, Simon Litsyn. Recursive descriptions of polar codes. Advances in Mathematics of Communications, 2017, 11 (1) : 1-65. doi: 10.3934/amc.2017001

[17]

M'Hammed Boulagouaz, André Leroy. ($\sigma,\delta$)-codes. Advances in Mathematics of Communications, 2013, 7 (4) : 463-474. doi: 10.3934/amc.2013.7.463

[18]

Vadim Azhmyakov, Alex Poznyak, Omar Gonzalez. On the robust control design for a class of nonlinearly affine control systems: The attractive ellipsoid approach. Journal of Industrial & Management Optimization, 2013, 9 (3) : 579-593. doi: 10.3934/jimo.2013.9.579

[19]

Claude Carlet, Yousuf Alsalami. A new construction of differentially 4-uniform $(n,n-1)$-functions. Advances in Mathematics of Communications, 2015, 9 (4) : 541-565. doi: 10.3934/amc.2015.9.541

[20]

Carolin Kreisbeck. A note on $3$d-$1$d dimension reduction with differential constraints. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 55-73. doi: 10.3934/dcdss.2017003

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]