-
Previous Article
Construction of subspace codes through linkage
- AMC Home
- This Issue
-
Next Article
Algebraic structures of MRD codes
Construction of 3-designs using $(1,\sigma)$-resolution
1. | Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann-Straße 9, 45127 Essen, Germany |
References:
[1] |
R. D. Baker, Partitioning the planes of $AG_{2m}(2)$ into 2-designs, Discr. Math., 15 (1976) 205-211. |
[2] |
Z. Baranyai, On the factorization of the complete uniform hypergraph, in Proc. Erdös-Colloquium Keszthely, North-Holland, Amsterdam, 1973, 91-108. |
[3] |
T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge Univ. Press, Cambridge, 1986. |
[4] |
J. Bierbrauer, Some friends of Alltop's designs $4-(2^f+1,5,5)$, J. Combin. Math. Combin. Comput., 36 (2001), 43-53. |
[5] |
J. Bierbrauer and T. van Trung, Shadow and shade of designs $4-(2^f+1,6,10)$, unpublished manuscript, 1994. |
[6] |
R. C. Bose, A note on the resolvability of balanced incomplete block designs, Sankhyā, 6 (1942), 105-110. |
[7] |
C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, 1996.
doi: 10.1201/9781420049954. |
[8] |
L. H. M. E. Driessen, $t$-designs, $t\geq 3$, Technical Report, Dep. Math., Technische Hogeschool Eindhoven, The Netherlands, 1978. |
[9] |
M. Jimbo, Y. Kunihara, R. Laue and M. Sawa, Unifying some known infinite families of combinatorial 3-designs, J. Combin. Theory Ser. A, 118 (2011), 1072-1085.
doi: 10.1016/j.jcta.2010.10.007. |
[10] |
D. Jungnickel and S. A. Vanstone, On resolvable designs $S_3(3;4,v)$, J. Combin. Theory A, 43 (1986), 334-337.
doi: 10.1016/0097-3165(86)90073-7. |
[11] |
R. Laue, Resolvable $t$-designs, Des. Codes Cryptogr., 32 (2004), 277-301.
doi: 10.1023/B:DESI.0000029230.50742.8f. |
[12] |
K. T. Phelps, D. R. Stinson and S. A. Vanstone, The existence of simple $S_3(3,4,v)$, Discrete Math., 77 (1989), 255-258.
doi: 10.1016/0012-365X(89)90364-6. |
[13] |
S. S. Shrikhande and D. Raghavarao, A method of construction of incomplete block designs, Sankhyā A, 25 (1963), 399-402. |
[14] |
S. S. Shrikhande and D. Raghavarao, Affine $\alpha$-resolvable incomplete block designs, in Contributions to Statistics, Pergamon Press, 1963, 471-480. |
[15] |
D. R. Stinson, C. M. Swanson and T. van Trung, A new look at an old construction: Constructing (simple) 3-designs from resolvable 2-designs, Discrete Math., 325 (2014), 23-31.
doi: 10.1016/j.disc.2014.02.009. |
[16] |
T. van Trung, Recursive constructions for 3-designs and resolvable 3-designs, J. Statist. Plann. Inference, 95 (2001), 341-358.
doi: 10.1016/S0378-3758(00)00308-6. |
[17] |
T. van Trung, Construction of 3-designs using parallelism, J. Geom., 67 (2000), 223-235.
doi: 10.1007/BF01220313. |
show all references
References:
[1] |
R. D. Baker, Partitioning the planes of $AG_{2m}(2)$ into 2-designs, Discr. Math., 15 (1976) 205-211. |
[2] |
Z. Baranyai, On the factorization of the complete uniform hypergraph, in Proc. Erdös-Colloquium Keszthely, North-Holland, Amsterdam, 1973, 91-108. |
[3] |
T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge Univ. Press, Cambridge, 1986. |
[4] |
J. Bierbrauer, Some friends of Alltop's designs $4-(2^f+1,5,5)$, J. Combin. Math. Combin. Comput., 36 (2001), 43-53. |
[5] |
J. Bierbrauer and T. van Trung, Shadow and shade of designs $4-(2^f+1,6,10)$, unpublished manuscript, 1994. |
[6] |
R. C. Bose, A note on the resolvability of balanced incomplete block designs, Sankhyā, 6 (1942), 105-110. |
[7] |
C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, 1996.
doi: 10.1201/9781420049954. |
[8] |
L. H. M. E. Driessen, $t$-designs, $t\geq 3$, Technical Report, Dep. Math., Technische Hogeschool Eindhoven, The Netherlands, 1978. |
[9] |
M. Jimbo, Y. Kunihara, R. Laue and M. Sawa, Unifying some known infinite families of combinatorial 3-designs, J. Combin. Theory Ser. A, 118 (2011), 1072-1085.
doi: 10.1016/j.jcta.2010.10.007. |
[10] |
D. Jungnickel and S. A. Vanstone, On resolvable designs $S_3(3;4,v)$, J. Combin. Theory A, 43 (1986), 334-337.
doi: 10.1016/0097-3165(86)90073-7. |
[11] |
R. Laue, Resolvable $t$-designs, Des. Codes Cryptogr., 32 (2004), 277-301.
doi: 10.1023/B:DESI.0000029230.50742.8f. |
[12] |
K. T. Phelps, D. R. Stinson and S. A. Vanstone, The existence of simple $S_3(3,4,v)$, Discrete Math., 77 (1989), 255-258.
doi: 10.1016/0012-365X(89)90364-6. |
[13] |
S. S. Shrikhande and D. Raghavarao, A method of construction of incomplete block designs, Sankhyā A, 25 (1963), 399-402. |
[14] |
S. S. Shrikhande and D. Raghavarao, Affine $\alpha$-resolvable incomplete block designs, in Contributions to Statistics, Pergamon Press, 1963, 471-480. |
[15] |
D. R. Stinson, C. M. Swanson and T. van Trung, A new look at an old construction: Constructing (simple) 3-designs from resolvable 2-designs, Discrete Math., 325 (2014), 23-31.
doi: 10.1016/j.disc.2014.02.009. |
[16] |
T. van Trung, Recursive constructions for 3-designs and resolvable 3-designs, J. Statist. Plann. Inference, 95 (2001), 341-358.
doi: 10.1016/S0378-3758(00)00308-6. |
[17] |
T. van Trung, Construction of 3-designs using parallelism, J. Geom., 67 (2000), 223-235.
doi: 10.1007/BF01220313. |
[1] |
Josselin Garnier, George Papanicolaou. Resolution enhancement from scattering in passive sensor imaging with cross correlations. Inverse Problems and Imaging, 2014, 8 (3) : 645-683. doi: 10.3934/ipi.2014.8.645 |
[2] |
Angelo Favini, Rabah Labbas, Keddour Lemrabet, Stéphane Maingot, Hassan D. Sidibé. Resolution and optimal regularity for a biharmonic equation with impedance boundary conditions and some generalizations. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4991-5014. doi: 10.3934/dcds.2013.33.4991 |
[3] |
Niklas Hartung. Efficient resolution of metastatic tumor growth models by reformulation into integral equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 445-467. doi: 10.3934/dcdsb.2015.20.445 |
[4] |
Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355 |
[5] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems and Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[6] |
Amine Laghrib, Abdelkrim Chakib, Aissam Hadri, Abdelilah Hakim. A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 415-442. doi: 10.3934/dcdsb.2019188 |
[7] |
Guillaume Bal, Jiaming Chen, Anthony B. Davis. Reconstruction of cloud geometry from high-resolution multi-angle images. Inverse Problems and Imaging, 2018, 12 (2) : 261-280. doi: 10.3934/ipi.2018011 |
[8] |
Fatimzehrae Ait Bella, Aissam Hadri, Abdelilah Hakim, Amine Laghrib. A nonlocal Weickert type PDE applied to multi-frame super-resolution. Evolution Equations and Control Theory, 2021, 10 (3) : 633-655. doi: 10.3934/eect.2020084 |
[9] |
Changming Song, Yun Wang. Nonlocal latent low rank sparse representation for single image super resolution via self-similarity learning. Inverse Problems and Imaging, 2021, 15 (6) : 1347-1362. doi: 10.3934/ipi.2021017 |
[10] |
Hssaine Boualam, Ahmed Roubi. Augmented Lagrangian dual for nonconvex minimax fractional programs and proximal bundle algorithms for its resolution. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022100 |
[11] |
Lluís Alsedà, Sylvie Ruette. On the set of periods of sigma maps of degree 1. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4683-4734. doi: 10.3934/dcds.2015.35.4683 |
[12] |
Wei Wan, Weihong Guo, Jun Liu, Haiyang Huang. Non-local blind hyperspectral image super-resolution via 4d sparse tensor factorization and low-rank. Inverse Problems and Imaging, 2020, 14 (2) : 339-361. doi: 10.3934/ipi.2020015 |
[13] |
Elisavet Konstantinou, Aristides Kontogeorgis. Some remarks on the construction of class polynomials. Advances in Mathematics of Communications, 2011, 5 (1) : 109-118. doi: 10.3934/amc.2011.5.109 |
[14] |
Ernesto Aranda, Pablo Pedregal. Constrained envelope for a general class of design problems. Conference Publications, 2003, 2003 (Special) : 30-41. doi: 10.3934/proc.2003.2003.30 |
[15] |
Kwangseok Choe, Jongmin Han, Chang-Shou Lin. Bubbling solutions for the Chern-Simons gauged $O(3)$ sigma model in $\mathbb{R}^2$. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2703-2728. doi: 10.3934/dcds.2014.34.2703 |
[16] |
Xin Li, Chunyou Sun, Na Zhang. Dynamics for a non-autonomous degenerate parabolic equation in $\mathfrak{D}_{0}^{1}(\Omega, \sigma)$. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7063-7079. doi: 10.3934/dcds.2016108 |
[17] |
Zhi-You Chen, Chung-Yang Wang, Yu-Jen Huang. On the asymptotic behavior of solutions for the self-dual Maxwell-Chern-Simons $ O(3) $ Sigma model. Discrete and Continuous Dynamical Systems, 2022, 42 (10) : 4887-4903. doi: 10.3934/dcds.2022077 |
[18] |
Daniele Bartoli, Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. A 3-cycle construction of complete arcs sharing $(q+3)/2$ points with a conic. Advances in Mathematics of Communications, 2013, 7 (3) : 319-334. doi: 10.3934/amc.2013.7.319 |
[19] |
H. T. Banks, D. Rubio, N. Saintier, M. I. Troparevsky. Optimal design for parameter estimation in EEG problems in a 3D multilayered domain. Mathematical Biosciences & Engineering, 2015, 12 (4) : 739-760. doi: 10.3934/mbe.2015.12.739 |
[20] |
Jae Man Park, Gang Uk Hwang, Boo Geum Jung. Design and analysis of an adaptive guard channel based CAC scheme in a 3G-WLAN integrated network. Journal of Industrial and Management Optimization, 2010, 6 (3) : 621-639. doi: 10.3934/jimo.2010.6.621 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]