-
Previous Article
A note on Erdős-Ko-Rado sets of generators in Hermitian polar spaces
- AMC Home
- This Issue
-
Next Article
Construction of 3-designs using $(1,\sigma)$-resolution
Construction of subspace codes through linkage
1. | University of Kentucky, Department of Mathematics, Lexington, KY 40506-0027 |
2. | Department of Mathematics, Viterbo University, La Crosse, WI, United States |
References:
[1] |
A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Zeit., 145 (1975), 211-229. |
[2] |
M. Braun, T. Etzion, P. Östergård, A. Vardy and A. Wassermann, Existence of $q$-analogs of Steiner systems, Forum Math. PI, to appear. |
[3] |
M. Braun and J. Reichelt, $q$-analogs of packing designs, J. Comb. Designs, 22 (2014), 306-321.
doi: 10.1002/jcd.21376. |
[4] |
T. Bu, Partitions of a vector space, Discr. Math., 31 (1980), 79-83.
doi: 10.1016/0012-365X(80)90174-0. |
[5] |
J. de la Cruz, M. Kiermaier, A. Wassermann and W. Willems, Algebraic structures of MRD Codes, Adv. Math. Commun., 10 (2016), 499-510.
doi: 10.3934/amc.2016021. |
[6] |
P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.
doi: 10.1016/0097-3165(78)90015-8. |
[7] |
D. A. Drake and J. W. Freeman, Partial $t$-spreads and group constructible $(s,r,\mu)$-nets, J. Geom., 13 (1979), 210-216.
doi: 10.1007/BF01919756. |
[8] |
S. El-Zanati, H. Jordon, G. Seelinger, P. Sissokho and L. Spence, The maximum size of a partial $3$-spread in a finite vector space over $\mathbb F_2$ Des. Codes Cryptogr., 54 (2010), 101-107.
doi: 10.1007/s10623-009-9311-1. |
[9] |
A. Elsenhans, A. Kohnert and A. Wassermann, Construction of codes for network coding, in Proc. 19th Int. Symp. Math. Theory Netw. Syst., Budapest, 2010, 1811-1814. |
[10] |
T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams, IEEE Trans. Inform. Theory, IT-55 (2009), 2909-2919.
doi: 10.1109/TIT.2009.2021376. |
[11] |
T. Etzion and N. Silberstein, Codes and designs related to lifted MRD codes, IEEE Trans. Inform. Theory, IT-59 (2013), 1004-1017.
doi: 10.1109/TIT.2012.2220119. |
[12] |
T. Etzion and A. Vardy, Error-correcting codes in projective space, IEEE Trans. Inform. Theory, IT-57 (2011), 1165-1173.
doi: 10.1109/TIT.2010.2095232. |
[13] |
E. M. Gabidulin, Theory of codes with maximal rank distance, Probl. Inf. Transm., 21 (1985), 1-12. |
[14] |
E. M. Gabidulin and M. Bossert, Algebraic codes for network coding, Probl. Inf. Trans. (Engl. Transl.), 45 (2009), 343-356.
doi: 10.1134/S003294600904005X. |
[15] |
E. M. Gabidulin and N. I. Pilipchuk, Rank subcodes in multicomponent network coding, Probl. Inf. Trans. (Engl. Transl.), 49 (2013), 40-53.
doi: 10.1134/S0032946013010043. |
[16] |
E. M. Gabidulin, N. I. Pilipchuk and M. Bossert, Decoding of random network codes, Probl. Inf. Trans. (Engl. Transl.), 46 (2010), 300-320.
doi: 10.1134/S0032946010040034. |
[17] |
H. Gluesing-Luerssen, K. Morrison and C. Troha, Cyclic orbit codes and stabilizer subfields, Adv. Math. Commun., 9 (2015), 177-197.
doi: 10.3934/amc.2015.9.177. |
[18] |
E. Gorla, F. Manganiello and J. Rosenthal, An algebraic approach for decoding spread codes, Adv. Math. Commun., 6 (2012), 443-466.
doi: 10.3934/amc.2012.6.443. |
[19] |
E. Gorla and A. Ravagnani, Partial spreads in random network coding, Finite Fields Appl., 26 (2014), 104-115.
doi: 10.1016/j.ffa.2013.11.007. |
[20] |
B. S. Hernandez and V. P. Sison, Grassmannian codes as lifts of matrix codes derived as images of linear block codes over finite fields, Global J. Pure Appl. Math., 12 (2016), 1801-1820. |
[21] |
T. Honold, M. Kiermaier and S. Kurz, Optimal binary subspace codes of length $6$, constant dimension $3$ and minimum subspace distance $4$, Contemp. Math., 632 (2015), 157-176.
doi: 10.1090/conm/632/12627. |
[22] |
A. Khaleghi, D. Silva and F. R. Kschischang, Subspace codes, in Proc. 12th IMA Conf. Crypt. Coding, Cirencester, 2009, 1-21.
doi: 10.1007/978-3-642-10868-6_1. |
[23] |
R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, IT-54 (2008), 3579-3591.
doi: 10.1109/TIT.2008.926449. |
[24] |
A. Kohnert and S. Kurz, Construction of large constant dimension codes with a prescribed minimum distance, in Mathematical Methods in Computer Science (eds. J. Calmet, W. Geiselmann and J. Müller-Quade), Springer, Berlin, 2008, 31-42.
doi: 10.1007/978-3-540-89994-5_4. |
[25] |
J. Rosenthal and A.-L. Trautmann, A complete characterization of irreducible cyclic orbit codes and their Plücker embedding, Des. Codes Cryptogr., 66 (2013), 275-289.
doi: 10.1007/s10623-012-9691-5. |
[26] |
N. Silberstein and A.-L. Trautmann, Subspace codes based on graph matchings, Ferrers diagrams, and pending blocks, IEEE Trans. Inform. Theory, IT-61 (2015), 3937-3953.
doi: 10.1109/TIT.2015.2435743. |
[27] |
D. Silva and F. R. Kschischang, On metrics for error correction in network coding, IEEE Trans. Inform. Theory, IT-55 (2009), 5479-5490.
doi: 10.1109/TIT.2009.2032817. |
[28] |
D. Silva, F. R. Kschischang and R. Kötter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, IT-54 (2008), 3951-3967.
doi: 10.1109/TIT.2008.928291. |
[29] |
V. Skachek, Recursive code construction for random networks, IEEE Trans. Inform. Theory, IT-56 (2010), 1378-1382.
doi: 10.1109/TIT.2009.2039163. |
[30] |
A.-L. Trautmann, F. Manganiello, M. Braun and J. Rosenthal, Cyclic orbit codes, IEEE Trans. Inform. Theory, IT-59 (2013), 7386-7404.
doi: 10.1109/TIT.2013.2274266. |
[31] |
A.-L. Trautmann and J. Rosenthal, New improvements on the Echelon Ferrers construction, in Proc. 19th Int. Symp. Math. Theory Netw. Syst., Budapest, 2010, 405-408. |
show all references
References:
[1] |
A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Zeit., 145 (1975), 211-229. |
[2] |
M. Braun, T. Etzion, P. Östergård, A. Vardy and A. Wassermann, Existence of $q$-analogs of Steiner systems, Forum Math. PI, to appear. |
[3] |
M. Braun and J. Reichelt, $q$-analogs of packing designs, J. Comb. Designs, 22 (2014), 306-321.
doi: 10.1002/jcd.21376. |
[4] |
T. Bu, Partitions of a vector space, Discr. Math., 31 (1980), 79-83.
doi: 10.1016/0012-365X(80)90174-0. |
[5] |
J. de la Cruz, M. Kiermaier, A. Wassermann and W. Willems, Algebraic structures of MRD Codes, Adv. Math. Commun., 10 (2016), 499-510.
doi: 10.3934/amc.2016021. |
[6] |
P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.
doi: 10.1016/0097-3165(78)90015-8. |
[7] |
D. A. Drake and J. W. Freeman, Partial $t$-spreads and group constructible $(s,r,\mu)$-nets, J. Geom., 13 (1979), 210-216.
doi: 10.1007/BF01919756. |
[8] |
S. El-Zanati, H. Jordon, G. Seelinger, P. Sissokho and L. Spence, The maximum size of a partial $3$-spread in a finite vector space over $\mathbb F_2$ Des. Codes Cryptogr., 54 (2010), 101-107.
doi: 10.1007/s10623-009-9311-1. |
[9] |
A. Elsenhans, A. Kohnert and A. Wassermann, Construction of codes for network coding, in Proc. 19th Int. Symp. Math. Theory Netw. Syst., Budapest, 2010, 1811-1814. |
[10] |
T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams, IEEE Trans. Inform. Theory, IT-55 (2009), 2909-2919.
doi: 10.1109/TIT.2009.2021376. |
[11] |
T. Etzion and N. Silberstein, Codes and designs related to lifted MRD codes, IEEE Trans. Inform. Theory, IT-59 (2013), 1004-1017.
doi: 10.1109/TIT.2012.2220119. |
[12] |
T. Etzion and A. Vardy, Error-correcting codes in projective space, IEEE Trans. Inform. Theory, IT-57 (2011), 1165-1173.
doi: 10.1109/TIT.2010.2095232. |
[13] |
E. M. Gabidulin, Theory of codes with maximal rank distance, Probl. Inf. Transm., 21 (1985), 1-12. |
[14] |
E. M. Gabidulin and M. Bossert, Algebraic codes for network coding, Probl. Inf. Trans. (Engl. Transl.), 45 (2009), 343-356.
doi: 10.1134/S003294600904005X. |
[15] |
E. M. Gabidulin and N. I. Pilipchuk, Rank subcodes in multicomponent network coding, Probl. Inf. Trans. (Engl. Transl.), 49 (2013), 40-53.
doi: 10.1134/S0032946013010043. |
[16] |
E. M. Gabidulin, N. I. Pilipchuk and M. Bossert, Decoding of random network codes, Probl. Inf. Trans. (Engl. Transl.), 46 (2010), 300-320.
doi: 10.1134/S0032946010040034. |
[17] |
H. Gluesing-Luerssen, K. Morrison and C. Troha, Cyclic orbit codes and stabilizer subfields, Adv. Math. Commun., 9 (2015), 177-197.
doi: 10.3934/amc.2015.9.177. |
[18] |
E. Gorla, F. Manganiello and J. Rosenthal, An algebraic approach for decoding spread codes, Adv. Math. Commun., 6 (2012), 443-466.
doi: 10.3934/amc.2012.6.443. |
[19] |
E. Gorla and A. Ravagnani, Partial spreads in random network coding, Finite Fields Appl., 26 (2014), 104-115.
doi: 10.1016/j.ffa.2013.11.007. |
[20] |
B. S. Hernandez and V. P. Sison, Grassmannian codes as lifts of matrix codes derived as images of linear block codes over finite fields, Global J. Pure Appl. Math., 12 (2016), 1801-1820. |
[21] |
T. Honold, M. Kiermaier and S. Kurz, Optimal binary subspace codes of length $6$, constant dimension $3$ and minimum subspace distance $4$, Contemp. Math., 632 (2015), 157-176.
doi: 10.1090/conm/632/12627. |
[22] |
A. Khaleghi, D. Silva and F. R. Kschischang, Subspace codes, in Proc. 12th IMA Conf. Crypt. Coding, Cirencester, 2009, 1-21.
doi: 10.1007/978-3-642-10868-6_1. |
[23] |
R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, IT-54 (2008), 3579-3591.
doi: 10.1109/TIT.2008.926449. |
[24] |
A. Kohnert and S. Kurz, Construction of large constant dimension codes with a prescribed minimum distance, in Mathematical Methods in Computer Science (eds. J. Calmet, W. Geiselmann and J. Müller-Quade), Springer, Berlin, 2008, 31-42.
doi: 10.1007/978-3-540-89994-5_4. |
[25] |
J. Rosenthal and A.-L. Trautmann, A complete characterization of irreducible cyclic orbit codes and their Plücker embedding, Des. Codes Cryptogr., 66 (2013), 275-289.
doi: 10.1007/s10623-012-9691-5. |
[26] |
N. Silberstein and A.-L. Trautmann, Subspace codes based on graph matchings, Ferrers diagrams, and pending blocks, IEEE Trans. Inform. Theory, IT-61 (2015), 3937-3953.
doi: 10.1109/TIT.2015.2435743. |
[27] |
D. Silva and F. R. Kschischang, On metrics for error correction in network coding, IEEE Trans. Inform. Theory, IT-55 (2009), 5479-5490.
doi: 10.1109/TIT.2009.2032817. |
[28] |
D. Silva, F. R. Kschischang and R. Kötter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, IT-54 (2008), 3951-3967.
doi: 10.1109/TIT.2008.928291. |
[29] |
V. Skachek, Recursive code construction for random networks, IEEE Trans. Inform. Theory, IT-56 (2010), 1378-1382.
doi: 10.1109/TIT.2009.2039163. |
[30] |
A.-L. Trautmann, F. Manganiello, M. Braun and J. Rosenthal, Cyclic orbit codes, IEEE Trans. Inform. Theory, IT-59 (2013), 7386-7404.
doi: 10.1109/TIT.2013.2274266. |
[31] |
A.-L. Trautmann and J. Rosenthal, New improvements on the Echelon Ferrers construction, in Proc. 19th Int. Symp. Math. Theory Netw. Syst., Budapest, 2010, 405-408. |
[1] |
Huimin Lao, Hao Chen. New constant dimension subspace codes from multilevel linkage construction. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022039 |
[2] |
Thomas Honold, Michael Kiermaier, Sascha Kurz. Constructions and bounds for mixed-dimension subspace codes. Advances in Mathematics of Communications, 2016, 10 (3) : 649-682. doi: 10.3934/amc.2016033 |
[3] |
Anna-Lena Trautmann. Isometry and automorphisms of constant dimension codes. Advances in Mathematics of Communications, 2013, 7 (2) : 147-160. doi: 10.3934/amc.2013.7.147 |
[4] |
Natalia Silberstein, Tuvi Etzion. Large constant dimension codes and lexicodes. Advances in Mathematics of Communications, 2011, 5 (2) : 177-189. doi: 10.3934/amc.2011.5.177 |
[5] |
Roland D. Barrolleta, Emilio Suárez-Canedo, Leo Storme, Peter Vandendriessche. On primitive constant dimension codes and a geometrical sunflower bound. Advances in Mathematics of Communications, 2017, 11 (4) : 757-765. doi: 10.3934/amc.2017055 |
[6] |
Sascha Kurz. The interplay of different metrics for the construction of constant dimension codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2021069 |
[7] |
Daniele Bartoli, Matteo Bonini, Massimo Giulietti. Constant dimension codes from Riemann-Roch spaces. Advances in Mathematics of Communications, 2017, 11 (4) : 705-713. doi: 10.3934/amc.2017051 |
[8] |
Antonio Cossidente, Sascha Kurz, Giuseppe Marino, Francesco Pavese. Combining subspace codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021007 |
[9] |
Ghislain Fourier, Gabriele Nebe. Degenerate flag varieties in network coding. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021027 |
[10] |
Ernst M. Gabidulin, Pierre Loidreau. Properties of subspace subcodes of Gabidulin codes. Advances in Mathematics of Communications, 2008, 2 (2) : 147-157. doi: 10.3934/amc.2008.2.147 |
[11] |
Keisuke Minami, Takahiro Matsuda, Tetsuya Takine, Taku Noguchi. Asynchronous multiple source network coding for wireless broadcasting. Numerical Algebra, Control and Optimization, 2011, 1 (4) : 577-592. doi: 10.3934/naco.2011.1.577 |
[12] |
Min Ye, Alexander Barg. Polar codes for distributed hierarchical source coding. Advances in Mathematics of Communications, 2015, 9 (1) : 87-103. doi: 10.3934/amc.2015.9.87 |
[13] |
Frédéric Vanhove. A geometric proof of the upper bound on the size of partial spreads in $H(4n+1,$q2$)$. Advances in Mathematics of Communications, 2011, 5 (2) : 157-160. doi: 10.3934/amc.2011.5.157 |
[14] |
Daniel Heinlein, Ferdinand Ihringer. New and updated semidefinite programming bounds for subspace codes. Advances in Mathematics of Communications, 2020, 14 (4) : 613-630. doi: 10.3934/amc.2020034 |
[15] |
Daniel Heinlein, Sascha Kurz. Binary subspace codes in small ambient spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 817-839. doi: 10.3934/amc.2018048 |
[16] |
Stefan Martignoli, Ruedi Stoop. Phase-locking and Arnold coding in prototypical network topologies. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 145-162. doi: 10.3934/dcdsb.2008.9.145 |
[17] |
Giuseppe Bianchi, Lorenzo Bracciale, Keren Censor-Hillel, Andrea Lincoln, Muriel Médard. The one-out-of-k retrieval problem and linear network coding. Advances in Mathematics of Communications, 2016, 10 (1) : 95-112. doi: 10.3934/amc.2016.10.95 |
[18] |
Gustavo Terra Bastos, Reginaldo Palazzo Júnior, Marinês Guerreiro. Abelian non-cyclic orbit codes and multishot subspace codes. Advances in Mathematics of Communications, 2020, 14 (4) : 631-650. doi: 10.3934/amc.2020035 |
[19] |
T. Jäger. Neuronal coding of pacemaker neurons -- A random dynamical systems approach. Communications on Pure and Applied Analysis, 2011, 10 (3) : 995-1009. doi: 10.3934/cpaa.2011.10.995 |
[20] |
Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]