August  2016, 10(3): 547-554. doi: 10.3934/amc.2016025

On the existence of Hadamard difference sets in groups of order 400

1. 

Faculty of Science, University of Split, Rudjera Boškovića 33, Split, 21000, Croatia, Croatia

Received  May 2015 Revised  June 2016 Published  August 2016

This paper concerns the problem of the existence of Hadamard difference sets in nonabelian groups of order 400. By introducing a new construction method, we construct new difference sets in 20 groups. We survey non-existence results, verifying non-existence in 45 groups.
Citation: Joško Mandić, Tanja Vučičić. On the existence of Hadamard difference sets in groups of order 400. Advances in Mathematics of Communications, 2016, 10 (3) : 547-554. doi: 10.3934/amc.2016025
References:
[1]

J. Combin. Des., 8 (2000), 221-231. doi: 10.1002/1520-6610(2000)8:4<221::AID-JCD1>3.3.CO;2-Y.  Google Scholar

[2]

Cambridge Univ. Press, 1999.  Google Scholar

[3]

edition 2.16, 2010. Google Scholar

[4]

Discrete Math., 118 (1993), 33-43. doi: 10.1016/0012-365X(93)90051-T.  Google Scholar

[5]

in Groups, Difference Sets and the Monster (eds. K.T. Arasu et al.), de Gruyter, Berlin-New York, 1996, 145-156.  Google Scholar

[6]

J. Combin. Theory Ser. A, 40 (1985), 9-21. doi: 10.1016/0097-3165(85)90043-3.  Google Scholar

[7]

Crypt. Commun., {2} (2010), 271-292. doi: 10.1007/s12095-010-0031-1.  Google Scholar

[8]

The GAP Group, GAP - Groups, Algorithms, and Programming, version 4.4,, available online at , ().   Google Scholar

[9]

J. Combin. Des., 9 (2001), 424-434. doi: 10.1002/jcd.1021.  Google Scholar

[10]

AMS, Providence, 2013. doi: 10.1090/stml/067.  Google Scholar

[11]

J. Combin. Theory Ser. A, 70 (1995), 144-156. doi: 10.1016/0097-3165(95)90084-5.  Google Scholar

[12]

J. Combin. Des., 8 (2000), 291-299. doi: 10.1002/1520-6610(2000)8:4<291::AID-JCD6>3.0.CO;2-L.  Google Scholar

[13]

=, ().   Google Scholar

show all references

References:
[1]

J. Combin. Des., 8 (2000), 221-231. doi: 10.1002/1520-6610(2000)8:4<221::AID-JCD1>3.3.CO;2-Y.  Google Scholar

[2]

Cambridge Univ. Press, 1999.  Google Scholar

[3]

edition 2.16, 2010. Google Scholar

[4]

Discrete Math., 118 (1993), 33-43. doi: 10.1016/0012-365X(93)90051-T.  Google Scholar

[5]

in Groups, Difference Sets and the Monster (eds. K.T. Arasu et al.), de Gruyter, Berlin-New York, 1996, 145-156.  Google Scholar

[6]

J. Combin. Theory Ser. A, 40 (1985), 9-21. doi: 10.1016/0097-3165(85)90043-3.  Google Scholar

[7]

Crypt. Commun., {2} (2010), 271-292. doi: 10.1007/s12095-010-0031-1.  Google Scholar

[8]

The GAP Group, GAP - Groups, Algorithms, and Programming, version 4.4,, available online at , ().   Google Scholar

[9]

J. Combin. Des., 9 (2001), 424-434. doi: 10.1002/jcd.1021.  Google Scholar

[10]

AMS, Providence, 2013. doi: 10.1090/stml/067.  Google Scholar

[11]

J. Combin. Theory Ser. A, 70 (1995), 144-156. doi: 10.1016/0097-3165(95)90084-5.  Google Scholar

[12]

J. Combin. Des., 8 (2000), 291-299. doi: 10.1002/1520-6610(2000)8:4<291::AID-JCD6>3.0.CO;2-L.  Google Scholar

[13]

=, ().   Google Scholar

[1]

Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021020

[2]

Sabyasachi Dey, Tapabrata Roy, Santanu Sarkar. Revisiting design principles of Salsa and ChaCha. Advances in Mathematics of Communications, 2019, 13 (4) : 689-704. doi: 10.3934/amc.2019041

[3]

Yu Yang, Jinling Zhou, Cheng-Hsiung Hsu. Critical traveling wave solutions for a vaccination model with general incidence. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021087

[4]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[5]

Yi Gao, Rui Li, Yingjing Shi, Li Xiao. Design of path planning and tracking control of quadrotor. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021063

[6]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[7]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[8]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[9]

Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021017

[10]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

[11]

Ruchika Sehgal, Aparna Mehra. Worst-case analysis of Gini mean difference safety measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1613-1637. doi: 10.3934/jimo.2020037

[12]

Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021031

[13]

Amira Khelifa, Yacine Halim. Global behavior of P-dimensional difference equations system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021029

[14]

Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu. Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, , () : -. doi: 10.3934/era.2021027

[15]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[16]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[17]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[18]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[19]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[20]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (101)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]