August  2016, 10(3): 547-554. doi: 10.3934/amc.2016025

On the existence of Hadamard difference sets in groups of order 400

1. 

Faculty of Science, University of Split, Rudjera Boškovića 33, Split, 21000, Croatia, Croatia

Received  May 2015 Revised  June 2016 Published  August 2016

This paper concerns the problem of the existence of Hadamard difference sets in nonabelian groups of order 400. By introducing a new construction method, we construct new difference sets in 20 groups. We survey non-existence results, verifying non-existence in 45 groups.
Citation: Joško Mandić, Tanja Vučičić. On the existence of Hadamard difference sets in groups of order 400. Advances in Mathematics of Communications, 2016, 10 (3) : 547-554. doi: 10.3934/amc.2016025
References:
[1]

J. Alexander, R. Balasubramanian, J. Martin, K. Monahan, H. Pollatsek and A. Sen, Ruling out $(160,54,18)$ difference sets in some nonabelian groups,, J. Combin. Des., 8 (2000), 221.  doi: 10.1002/1520-6610(2000)8:4<221::AID-JCD1>3.3.CO;2-Y.  Google Scholar

[2]

T. Beth, D. Jungnickel and H. Lenz, Design Theory,, Cambridge Univ. Press, (1999).   Google Scholar

[3]

W. Bosma, J. J. Cannon, C. Fieker and A. Steel, Handbook of Magma Functions,, edition 2.16, (2010).   Google Scholar

[4]

P. J. Cameron and C. E. Praeger, Block-transitive t-designs I: point-imprimitive designs,, Discrete Math., 118 (1993), 33.  doi: 10.1016/0012-365X(93)90051-T.  Google Scholar

[5]

J. A. Davis and J. Jedwab, A survey of Hadamard difference sets,, in Groups, (1996), 145.   Google Scholar

[6]

J. F. Dillon, Variations on a scheme of McFarland for noncyclic difference sets,, J. Combin. Theory Ser. A, 40 (1985), 9.  doi: 10.1016/0097-3165(85)90043-3.  Google Scholar

[7]

J. F. Dillon, Some REALLY beautiful Hadamard matrices,, Crypt. Commun., (2010), 271.  doi: 10.1007/s12095-010-0031-1.  Google Scholar

[8]

The GAP Group, GAP - Groups, Algorithms, and Programming, version 4.4,, available online at , ().   Google Scholar

[9]

A. Golemac and T. Vučičić, New difference sets in nonabelian groups of order $100$,, J. Combin. Des., 9 (2001), 424.  doi: 10.1002/jcd.1021.  Google Scholar

[10]

E. H. Moore and H. S. Pollatsek, Difference Sets: Connecting Algebra, Combinatorics and Geometry,, AMS, (2013).  doi: 10.1090/stml/067.  Google Scholar

[11]

K. W. Smith, Nonabelian Hadamard difference sets,, J. Combin. Theory Ser. A, 70 (1995), 144.  doi: 10.1016/0097-3165(95)90084-5.  Google Scholar

[12]

T. Vučičić, New symmetric designs and nonabelian difference sets with parameters $(100, 45, 20)$,, J. Combin. Des., 8 (2000), 291.  doi: 10.1002/1520-6610(2000)8:4<291::AID-JCD6>3.0.CO;2-L.  Google Scholar

[13]

=, ().   Google Scholar

show all references

References:
[1]

J. Alexander, R. Balasubramanian, J. Martin, K. Monahan, H. Pollatsek and A. Sen, Ruling out $(160,54,18)$ difference sets in some nonabelian groups,, J. Combin. Des., 8 (2000), 221.  doi: 10.1002/1520-6610(2000)8:4<221::AID-JCD1>3.3.CO;2-Y.  Google Scholar

[2]

T. Beth, D. Jungnickel and H. Lenz, Design Theory,, Cambridge Univ. Press, (1999).   Google Scholar

[3]

W. Bosma, J. J. Cannon, C. Fieker and A. Steel, Handbook of Magma Functions,, edition 2.16, (2010).   Google Scholar

[4]

P. J. Cameron and C. E. Praeger, Block-transitive t-designs I: point-imprimitive designs,, Discrete Math., 118 (1993), 33.  doi: 10.1016/0012-365X(93)90051-T.  Google Scholar

[5]

J. A. Davis and J. Jedwab, A survey of Hadamard difference sets,, in Groups, (1996), 145.   Google Scholar

[6]

J. F. Dillon, Variations on a scheme of McFarland for noncyclic difference sets,, J. Combin. Theory Ser. A, 40 (1985), 9.  doi: 10.1016/0097-3165(85)90043-3.  Google Scholar

[7]

J. F. Dillon, Some REALLY beautiful Hadamard matrices,, Crypt. Commun., (2010), 271.  doi: 10.1007/s12095-010-0031-1.  Google Scholar

[8]

The GAP Group, GAP - Groups, Algorithms, and Programming, version 4.4,, available online at , ().   Google Scholar

[9]

A. Golemac and T. Vučičić, New difference sets in nonabelian groups of order $100$,, J. Combin. Des., 9 (2001), 424.  doi: 10.1002/jcd.1021.  Google Scholar

[10]

E. H. Moore and H. S. Pollatsek, Difference Sets: Connecting Algebra, Combinatorics and Geometry,, AMS, (2013).  doi: 10.1090/stml/067.  Google Scholar

[11]

K. W. Smith, Nonabelian Hadamard difference sets,, J. Combin. Theory Ser. A, 70 (1995), 144.  doi: 10.1016/0097-3165(95)90084-5.  Google Scholar

[12]

T. Vučičić, New symmetric designs and nonabelian difference sets with parameters $(100, 45, 20)$,, J. Combin. Des., 8 (2000), 291.  doi: 10.1002/1520-6610(2000)8:4<291::AID-JCD6>3.0.CO;2-L.  Google Scholar

[13]

=, ().   Google Scholar

[1]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[2]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[3]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

[4]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[5]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[6]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[7]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[8]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[9]

Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[10]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[11]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[12]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[13]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[14]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[15]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[16]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[17]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[18]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[19]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[20]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]