August  2016, 10(3): 555-582. doi: 10.3934/amc.2016026

Self-orthogonal codes from the strongly regular graphs on up to 40 vertices

1. 

Department of Mathematics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia

2. 

School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Durban 4000, South Africa

Received  May 2015 Revised  June 2016 Published  August 2016

This paper outlines a method for constructing self-orthogonal codes from orbit matrices of strongly regular graphs admitting an automorphism group $G$ which acts with orbits of length $w$, where $w$ divides $|G|$. We apply this method to construct self-orthogonal codes from orbit matrices of the strongly regular graphs with at most 40 vertices. In particular, we construct codes from adjacency or orbit matrices of graphs with parameters $(36, 15, 6, 6)$, $(36, 14, 4, 6)$, $(35, 16, 6, 8)$ and their complements, and from the graphs with parameters $(40, 12, 2, 4)$ and their complements. That completes the classification of self-orthogonal codes spanned by the adjacency matrices or orbit matrices of the strongly regular graphs with at most 40 vertices. Furthermore, we construct ternary codes of $2$-$(27,9,4)$ designs obtained as residual designs of the symmetric $(40, 13, 4)$ designs (complementary designs of the symmetric $(40, 27, 18)$ designs), and their ternary hulls. Some of the obtained codes are optimal, and some are best known for the given length and dimension.
Citation: Dean Crnković, Marija Maksimović, Bernardo Gabriel Rodrigues, Sanja Rukavina. Self-orthogonal codes from the strongly regular graphs on up to 40 vertices. Advances in Mathematics of Communications, 2016, 10 (3) : 555-582. doi: 10.3934/amc.2016026
References:
[1]

E. F. Assmus, Jr. and J. D. Key, Designs and their Codes, Cambridge Univ. Press, 1992. doi: 10.1017/CBO9781316529836.  Google Scholar

[2]

M. Behbahani and C. Lam, Strongly regular graphs with non-trivial automorphisms, Discrete Math., 311 (2011), 132-144. doi: 10.1016/j.disc.2010.10.005.  Google Scholar

[3]

T. Beth, D. Jungnickel and H. Lenz, Design Theory I, Cambridge Univ. Press, Cambridge, 1999.  Google Scholar

[4]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symb. Comput., 24 (1997), 235-265. doi: 10.1006/jsco.1996.0125.  Google Scholar

[5]

I. Bouyukliev, On the binary projective codes with dimension 6, Discrete Appl. Math., 154 (2006), 1693-1708. doi: 10.1016/j.dam.2006.03.004.  Google Scholar

[6]

I. Bouyukliev, V. Fack, W. Willems and J. Winne, Projective two-weight codes with small parameters and their corresponding graphs, Des. Codes Cryptogr., 41 (2006), 59-78. doi: 10.1007/s10623-006-0019-1.  Google Scholar

[7]

A. E. Brouwer and W. H. Haemers, Structure and uniqueness of the $(81,20,1,6)$ strongly regular graph, Discrete Math., 106/107 (1992), 77-82. doi: 10.1016/0012-365X(92)90532-K.  Google Scholar

[8]

D. Crnković, V. Mikulić Crnković and B. G. Rodrigues, Some optimal codes and strongly regular graphs from the linear group $L_4(3)$, Util. Math., 89 (2012), 237-255.  Google Scholar

[9]

D. Crnković, B. G. Rodrigues, S. Rukavina and L. Simčić, Self-orthogonal codes from orbit matrices of $2$-designs, Adv. Math. Commun., 7 (2013), 161-174. doi: 10.3934/amc.2013.7.161.  Google Scholar

[10]

D. Crnković and S. Rukavina, Construction of block designs admitting an abelian automorphism group, Metrika, 62 (2005), 175-183. doi: 10.1007/s00184-005-0407-y.  Google Scholar

[11]

D. Crnković and S. Rukavina, On some symmetric $(45, 12, 3)$ and $(40,13, 4)$ designs, J. Comput. Math. Optim., 1 (2005), 55-63.  Google Scholar

[12]

M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, http://www.codetables.de, Accessed 9 June 2016. Google Scholar

[13]

W. H. Haemers, R. Peeters and J. M. van Rijckevorsel, Binary codes of strongly regular graphs, Des. Codes Cryptogr., 17 (1999), 187-209. doi: 10.1023/A:1008353723204.  Google Scholar

[14]

N. Hamada, On the $p$-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its application to error correcting codes, Hiroshima Math. J., 3 (1973), 153-226.  Google Scholar

[15]

M. Harada and V. D. Tonchev, Self-orthogonal codes from symmetric designswith fixed-point-free automorphisms, Discrete Math., 264 (2003), 81-90. doi: 10.1016/S0012-365X(02)00553-8.  Google Scholar

[16]

R. Hill and D. E. Newton, Optimal ternary linear codes, Des. Codes Cryptogr., 2 (1992), 137-157. doi: 10.1007/BF00124893.  Google Scholar

[17]

Z. Janko, Coset enumeration in groups and constructions of symmetric designs, Ann. Discrete Math., 52 (1992), 275-277. doi: 10.1016/S0167-5060(08)70919-1.  Google Scholar

[18]

C. Jansen, K. Lux, R. Parker and R. Wilson, An Atlas of Brauer Characters, Oxford Scient. Publ., Clarendon Press, 1995.  Google Scholar

[19]

J. D. Key and K. Mackenzie-Fleming, Rigidity theorems for a class of affine resolvable designs, J. Combin. Math. Combin. Comput., 35 (2000), 147-160.  Google Scholar

[20]

R. Mathon and A. Rosa, 2-$(v,k,\lambda)$ designs of small order, in Handbook of Combinatorial Designs (eds. C.J. Colbourn and J.H. Dinitz), Chapman and Hall/CRC, Boca Raton, 2007, 25-58.  Google Scholar

[21]

B. D. McKay and E. Spence, Classification of regular two-graphs on 36 and 38 vertices, Austral. J. Combin., 24 (2001), 293-300.  Google Scholar

[22]

B. G. Rodrigues, Self-orthogonal designs and codes from the symplectic groups $S_4(3)$ and $S_4(4)$, Discrete Math., 308 (2008), 1941-1950. doi: 10.1016/j.disc.2007.04.047.  Google Scholar

[23]

B. G. Rodrigues, Some optimal codes related to graphs invariant under the alternating group $A_8$, Adv. Math. Commun., 5 (2011), 339-350. doi: 10.3934/amc.2011.5.339.  Google Scholar

[24]

L. D. Rudolph, A class of majority logic decodable codes, IEEE Trans. Inform. Theory, 13 (1967), 305-307. Google Scholar

[25]

S. S. Sane and M. S. Shrikhande, Quasi-Symmetric Designs, Cambridge Univ. Press, 1991. doi: 10.1017/CBO9780511665615.  Google Scholar

[26]

E. Spence, The strongly regular $(40,12,2,4)$ graphs, Electron. J. Combin., 7 (2000), \#22, pp. 4.  Google Scholar

[27]

E. Spence, Strongly regular graphs on at most 64 vertices, http://www.maths.gla.ac.uk/ es/srgraphs.php, Accessed 9 June 2016. Google Scholar

[28]

V. D. Tonchev, Codes, in Handbook of Combinatorial Designs, (eds. C.J. Colbourn and J.H. Dinitz), Chapman and Hall/CRC, Boca Raton, 2007, 667-702.  Google Scholar

show all references

References:
[1]

E. F. Assmus, Jr. and J. D. Key, Designs and their Codes, Cambridge Univ. Press, 1992. doi: 10.1017/CBO9781316529836.  Google Scholar

[2]

M. Behbahani and C. Lam, Strongly regular graphs with non-trivial automorphisms, Discrete Math., 311 (2011), 132-144. doi: 10.1016/j.disc.2010.10.005.  Google Scholar

[3]

T. Beth, D. Jungnickel and H. Lenz, Design Theory I, Cambridge Univ. Press, Cambridge, 1999.  Google Scholar

[4]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symb. Comput., 24 (1997), 235-265. doi: 10.1006/jsco.1996.0125.  Google Scholar

[5]

I. Bouyukliev, On the binary projective codes with dimension 6, Discrete Appl. Math., 154 (2006), 1693-1708. doi: 10.1016/j.dam.2006.03.004.  Google Scholar

[6]

I. Bouyukliev, V. Fack, W. Willems and J. Winne, Projective two-weight codes with small parameters and their corresponding graphs, Des. Codes Cryptogr., 41 (2006), 59-78. doi: 10.1007/s10623-006-0019-1.  Google Scholar

[7]

A. E. Brouwer and W. H. Haemers, Structure and uniqueness of the $(81,20,1,6)$ strongly regular graph, Discrete Math., 106/107 (1992), 77-82. doi: 10.1016/0012-365X(92)90532-K.  Google Scholar

[8]

D. Crnković, V. Mikulić Crnković and B. G. Rodrigues, Some optimal codes and strongly regular graphs from the linear group $L_4(3)$, Util. Math., 89 (2012), 237-255.  Google Scholar

[9]

D. Crnković, B. G. Rodrigues, S. Rukavina and L. Simčić, Self-orthogonal codes from orbit matrices of $2$-designs, Adv. Math. Commun., 7 (2013), 161-174. doi: 10.3934/amc.2013.7.161.  Google Scholar

[10]

D. Crnković and S. Rukavina, Construction of block designs admitting an abelian automorphism group, Metrika, 62 (2005), 175-183. doi: 10.1007/s00184-005-0407-y.  Google Scholar

[11]

D. Crnković and S. Rukavina, On some symmetric $(45, 12, 3)$ and $(40,13, 4)$ designs, J. Comput. Math. Optim., 1 (2005), 55-63.  Google Scholar

[12]

M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, http://www.codetables.de, Accessed 9 June 2016. Google Scholar

[13]

W. H. Haemers, R. Peeters and J. M. van Rijckevorsel, Binary codes of strongly regular graphs, Des. Codes Cryptogr., 17 (1999), 187-209. doi: 10.1023/A:1008353723204.  Google Scholar

[14]

N. Hamada, On the $p$-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its application to error correcting codes, Hiroshima Math. J., 3 (1973), 153-226.  Google Scholar

[15]

M. Harada and V. D. Tonchev, Self-orthogonal codes from symmetric designswith fixed-point-free automorphisms, Discrete Math., 264 (2003), 81-90. doi: 10.1016/S0012-365X(02)00553-8.  Google Scholar

[16]

R. Hill and D. E. Newton, Optimal ternary linear codes, Des. Codes Cryptogr., 2 (1992), 137-157. doi: 10.1007/BF00124893.  Google Scholar

[17]

Z. Janko, Coset enumeration in groups and constructions of symmetric designs, Ann. Discrete Math., 52 (1992), 275-277. doi: 10.1016/S0167-5060(08)70919-1.  Google Scholar

[18]

C. Jansen, K. Lux, R. Parker and R. Wilson, An Atlas of Brauer Characters, Oxford Scient. Publ., Clarendon Press, 1995.  Google Scholar

[19]

J. D. Key and K. Mackenzie-Fleming, Rigidity theorems for a class of affine resolvable designs, J. Combin. Math. Combin. Comput., 35 (2000), 147-160.  Google Scholar

[20]

R. Mathon and A. Rosa, 2-$(v,k,\lambda)$ designs of small order, in Handbook of Combinatorial Designs (eds. C.J. Colbourn and J.H. Dinitz), Chapman and Hall/CRC, Boca Raton, 2007, 25-58.  Google Scholar

[21]

B. D. McKay and E. Spence, Classification of regular two-graphs on 36 and 38 vertices, Austral. J. Combin., 24 (2001), 293-300.  Google Scholar

[22]

B. G. Rodrigues, Self-orthogonal designs and codes from the symplectic groups $S_4(3)$ and $S_4(4)$, Discrete Math., 308 (2008), 1941-1950. doi: 10.1016/j.disc.2007.04.047.  Google Scholar

[23]

B. G. Rodrigues, Some optimal codes related to graphs invariant under the alternating group $A_8$, Adv. Math. Commun., 5 (2011), 339-350. doi: 10.3934/amc.2011.5.339.  Google Scholar

[24]

L. D. Rudolph, A class of majority logic decodable codes, IEEE Trans. Inform. Theory, 13 (1967), 305-307. Google Scholar

[25]

S. S. Sane and M. S. Shrikhande, Quasi-Symmetric Designs, Cambridge Univ. Press, 1991. doi: 10.1017/CBO9780511665615.  Google Scholar

[26]

E. Spence, The strongly regular $(40,12,2,4)$ graphs, Electron. J. Combin., 7 (2000), \#22, pp. 4.  Google Scholar

[27]

E. Spence, Strongly regular graphs on at most 64 vertices, http://www.maths.gla.ac.uk/ es/srgraphs.php, Accessed 9 June 2016. Google Scholar

[28]

V. D. Tonchev, Codes, in Handbook of Combinatorial Designs, (eds. C.J. Colbourn and J.H. Dinitz), Chapman and Hall/CRC, Boca Raton, 2007, 667-702.  Google Scholar

[1]

Dean Crnković, Ronan Egan, Andrea Švob. Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs. Advances in Mathematics of Communications, 2020, 14 (4) : 591-602. doi: 10.3934/amc.2020032

[2]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 885-902. doi: 10.3934/cpaa.2020295

[3]

Ayça Çeşmelioğlu, Wilfried Meidl. Bent and vectorial bent functions, partial difference sets, and strongly regular graphs. Advances in Mathematics of Communications, 2018, 12 (4) : 691-705. doi: 10.3934/amc.2018041

[4]

Peter Giesl. On a matrix-valued PDE characterizing a contraction metric for a periodic orbit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4839-4865. doi: 10.3934/dcdsb.2020315

[5]

Cristian Dobre. Mathematical properties of the regular *-representation of matrix $*$-algebras with applications to semidefinite programming. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 367-378. doi: 10.3934/naco.2013.3.367

[6]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357

[7]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[8]

Maria Bortos, Joe Gildea, Abidin Kaya, Adrian Korban, Alexander Tylyshchak. New self-dual codes of length 68 from a $ 2 \times 2 $ block matrix construction and group rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020111

[9]

Dequan Yue, Wuyi Yue. Block-partitioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns. Journal of Industrial & Management Optimization, 2009, 5 (3) : 417-430. doi: 10.3934/jimo.2009.5.417

[10]

Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245

[11]

Qingshan You, Qun Wan, Yipeng Liu. A short note on strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2013, 7 (1) : 305-306. doi: 10.3934/ipi.2013.7.305

[12]

María Chara, Ricardo A. Podestá, Ricardo Toledano. The conorm code of an AG-code. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021018

[13]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[14]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[15]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[16]

Tian Ma, Shouhong Wang. Block structure and block stability of two-dimensional incompressible flows. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 169-184. doi: 10.3934/dcdsb.2006.6.169

[17]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[18]

Oded Schramm. Hyperfinite graph limits. Electronic Research Announcements, 2008, 15: 17-23. doi: 10.3934/era.2008.15.17

[19]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[20]

John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16.

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (257)
  • HTML views (0)
  • Cited by (2)

[Back to Top]