August  2016, 10(3): 583-588. doi: 10.3934/amc.2016027

There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$

1. 

Department of EE-Systems, Tel Aviv University, Tel Aviv, Israel

2. 

Lehrstuhl D für Mathematik, RWTH Aachen University, 52056 Aachen

Received  May 2015 Revised  October 2015 Published  August 2016

We show that there is no $[24,12,9]$ doubly-even self-dual code over $\mathbb{F}_4$ by attempting to construct the generator matrix of this code directly.
Citation: Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027
References:
[1]

J. Combin. Theory, 6 (1969), 122-151.  Google Scholar

[2]

K. Betsumiya, On the classification of type II codes over $\mathbbF_{2^r}$ with binary length 32,, preprint., ().   Google Scholar

[3]

IEEE Trans. Inform. Theory, 47 (2001), 2242-2248. doi: 10.1109/18.945245.  Google Scholar

[4]

J. Symbolic Comput., 24 (1997), 235-265. doi: 10.1006/jsco.1996.0125.  Google Scholar

[5]

Adv. Math. Commun., 3 (2009), 363-383. doi: 10.3934/amc.2009.3.363.  Google Scholar

[6]

Finite Fields Appl., 8 (2002), 171-183. doi: 10.1006/ffta.2001.0333.  Google Scholar

[7]

Diploma thesis, RWTH Aachen, 2006. Available online at http://www.math.rwth-aachen.de/~Gabriele.Nebe/dipl/guenther.pdf Google Scholar

[8]

Cambridge University Press, 2003. doi: 10.1017/CBO9780511807077.  Google Scholar

[9]

Finite Fields Appl., 10 (2004), 540-550. doi: 10.1016/j.ffa.2003.12.001.  Google Scholar

[10]

Discrete Math., 98 (1991), 29-34. doi: 10.1016/0012-365X(91)90410-4.  Google Scholar

[11]

The Sage Development Team, Sage Mathematics Software, Version 6.4.1,, , ().   Google Scholar

show all references

References:
[1]

J. Combin. Theory, 6 (1969), 122-151.  Google Scholar

[2]

K. Betsumiya, On the classification of type II codes over $\mathbbF_{2^r}$ with binary length 32,, preprint., ().   Google Scholar

[3]

IEEE Trans. Inform. Theory, 47 (2001), 2242-2248. doi: 10.1109/18.945245.  Google Scholar

[4]

J. Symbolic Comput., 24 (1997), 235-265. doi: 10.1006/jsco.1996.0125.  Google Scholar

[5]

Adv. Math. Commun., 3 (2009), 363-383. doi: 10.3934/amc.2009.3.363.  Google Scholar

[6]

Finite Fields Appl., 8 (2002), 171-183. doi: 10.1006/ffta.2001.0333.  Google Scholar

[7]

Diploma thesis, RWTH Aachen, 2006. Available online at http://www.math.rwth-aachen.de/~Gabriele.Nebe/dipl/guenther.pdf Google Scholar

[8]

Cambridge University Press, 2003. doi: 10.1017/CBO9780511807077.  Google Scholar

[9]

Finite Fields Appl., 10 (2004), 540-550. doi: 10.1016/j.ffa.2003.12.001.  Google Scholar

[10]

Discrete Math., 98 (1991), 29-34. doi: 10.1016/0012-365X(91)90410-4.  Google Scholar

[11]

The Sage Development Team, Sage Mathematics Software, Version 6.4.1,, , ().   Google Scholar

[1]

Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077

[2]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[3]

Jinsen Guo, Yongwu Zhou, Baixun Li. The optimal pricing and service strategies of a dual-channel retailer under free riding. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021056

[4]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[5]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[6]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[7]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[8]

Wei Wang, Yang Shen, Linyi Qian, Zhixin Yang. Hedging strategy for unit-linked life insurance contracts with self-exciting jump clustering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021072

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]