August  2016, 10(3): 589-600. doi: 10.3934/amc.2016028

Explicit constructions of some non-Gabidulin linear maximum rank distance codes

1. 

Department of Mathematics & Institute of Applied Mathematics, Middle East Technical University, 06800, Ankara, Turkey

2. 

Department of Mathematics and Institute of Applied Mathematics, Middle East Technical University, Dumlupnar Bulvar, 06800, Ankara

Received  May 2015 Revised  June 2016 Published  August 2016

We investigate rank metric codes using univariate linearized polynomials and multivariate linearized polynomials together. We examine the construction of maximum rank distance (MRD) codes and the test of equivalence between two codes in the polynomial representation. Using this approach, we present new classes of some non-Gabidulin linear MRD codes.
Citation: Kamil Otal, Ferruh Özbudak. Explicit constructions of some non-Gabidulin linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 589-600. doi: 10.3934/amc.2016028
References:
[1]

J. Berson, Linearized polynomial maps over finite fields,, J. Algebra, 399 (2014), 389.  doi: 10.1016/j.jalgebra.2013.10.013.  Google Scholar

[2]

J. de la Cruz, M. Kiermaier, A. Wassermann and W. Willems, Algebraic structures of MRD Codes,, Adv. Math. Commun., 10 (2016), 499.  doi: 10.3934/amc.2016021.  Google Scholar

[3]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory,, J. Comb. Theory A, 25 (1978), 226.  doi: 10.1016/0097-3165(78)90015-8.  Google Scholar

[4]

E. M. Gabidulin, Theory of codes with maximum rank distance,, Probl. Inform. Transm., 21 (1985), 1.   Google Scholar

[5]

A.-L. Horlemann-Trautmann and K. Marshall, New criteria for MRD and Gabidulin codes and some rank-metric code constructions,, preprint, ().   Google Scholar

[6]

A. Kshevetskiy and E. Gabidulin, The new construction of rank codes,, in Proc. Int. Symp. Inf. Theory (ISIT 2005), (2005), 2105.   Google Scholar

[7]

R. Lidl and H. Niederreiter, Finite Fields,, Cambridge Univ. Press, (1997).   Google Scholar

[8]

K. Morrison, Equivalence of rank-metric and matrix codes and automorphism groups of Gabidulin codes,, IEEE Trans. Inf. Theory, 60 (2014), 7035.  doi: 10.1109/TIT.2014.2359198.  Google Scholar

[9]

O. Ore, On a special class of polynomials,, Trans. Amer. Math. Soc., 35 (1933), 559.  doi: 10.2307/1989849.  Google Scholar

[10]

J. Sheekey, A new family of linear maximum rank distance codes,, preprint, ().   Google Scholar

show all references

References:
[1]

J. Berson, Linearized polynomial maps over finite fields,, J. Algebra, 399 (2014), 389.  doi: 10.1016/j.jalgebra.2013.10.013.  Google Scholar

[2]

J. de la Cruz, M. Kiermaier, A. Wassermann and W. Willems, Algebraic structures of MRD Codes,, Adv. Math. Commun., 10 (2016), 499.  doi: 10.3934/amc.2016021.  Google Scholar

[3]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory,, J. Comb. Theory A, 25 (1978), 226.  doi: 10.1016/0097-3165(78)90015-8.  Google Scholar

[4]

E. M. Gabidulin, Theory of codes with maximum rank distance,, Probl. Inform. Transm., 21 (1985), 1.   Google Scholar

[5]

A.-L. Horlemann-Trautmann and K. Marshall, New criteria for MRD and Gabidulin codes and some rank-metric code constructions,, preprint, ().   Google Scholar

[6]

A. Kshevetskiy and E. Gabidulin, The new construction of rank codes,, in Proc. Int. Symp. Inf. Theory (ISIT 2005), (2005), 2105.   Google Scholar

[7]

R. Lidl and H. Niederreiter, Finite Fields,, Cambridge Univ. Press, (1997).   Google Scholar

[8]

K. Morrison, Equivalence of rank-metric and matrix codes and automorphism groups of Gabidulin codes,, IEEE Trans. Inf. Theory, 60 (2014), 7035.  doi: 10.1109/TIT.2014.2359198.  Google Scholar

[9]

O. Ore, On a special class of polynomials,, Trans. Amer. Math. Soc., 35 (1933), 559.  doi: 10.2307/1989849.  Google Scholar

[10]

J. Sheekey, A new family of linear maximum rank distance codes,, preprint, ().   Google Scholar

[1]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[2]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[3]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[4]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[5]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[6]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[7]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[8]

Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053

[9]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[10]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[11]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[12]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[13]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[14]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[15]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[16]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

[17]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

[18]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001

[19]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[20]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (113)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]