\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The non-existence of $(104,22;3,5)$-arcs

Abstract Related Papers Cited by
  • Using some recent results about multiple extendability of arcs and codes, we prove the nonexistence of $(104,22)$-arcs in $PG(3,5)$. This implies the non-existence of Griesmer $[104,4,82]_5$-codes and settles one of the four remaining open cases for the main problem of coding theory for $q=5,k=4,d=82$.
    Mathematics Subject Classification: Primary: 51C05, 51E21, 51E22; Secondary: 94B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Ball, On intersection sets in Desarguesian affine spaces, European J. Combin., 21 (2000), 441-446.doi: 10.1006/eujc.2000.0350.

    [2]

    I. Boukliev, Optimal Linear Codes - Constructions and Bounds, Ph.D thesis, Sofia, 1996.

    [3]

    S. Dodunekov and J. Simonis, Codes and projective multisets, Electr. J. Combin., 5 (1998), #R37.

    [4]

    Y. Edel and I. Landjev, On multiple caps in finite projective spaces, Des. Codes Cryptogr., 56 (2010), 163-175.doi: 10.1007/s10623-010-9398-4.

    [5]

    J. H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop., 4 (1960), 532-542.

    [6]

    R. Hill, Optimal linear codes, in Cryptography and Coding (ed. C. Mitchell), Oxford Univ. Press, 1992, 75-104.

    [7]

    R. Hill and E. Kolev, A survey of recent results on optimal linear codes, in Combinatorial Designs and their Application (eds. F.C. Holroyd, K.A.S. Quinn, Ch. Rowley and B.S. Webb), Chapman & Hall CRC, 1999, 127-152.

    [8]

    I. Landjev, The geometry of $(n,3)$-arcs in the projective plane of order 5, in Proc. 6th Workshop ACCT, Sozopol, 1996, 170-175.

    [9]

    I. Landjev and A. Rousseva, On the Extendability of Griesmer Arcs, Ann. Sof. Univ. Fac. Math. Inf., 101 (2013), 183-192.

    [10]

    I. Landjev, A. Rousseva and L. Storme, On the extendability of quasidivisible Griesmer arcs, Des. Codes Cryptogr., 79 (2016), 535-547.doi: 10.1007/s10623-015-0114-2.

    [11]

    I. Landjev and L. Storme, Linear codes and Galois geometries, in Current Research Topics in Galois Geometries (eds. L. Storme and J. De Beule), NOVA Publishers, 2012, 187-214.

    [12]

    T. Maruta, A new extension theorem for linear codes, Finite Fields Appl., 10 (2004), 674-685.doi: 10.1016/j.ffa.2004.02.001.

    [13]

    T. Marutahttp://www.mi.s.oskafu-u.ac.jp/~maruta/griesmer.htm

    [14]

    A. Rousseva, On the structure of $(t$ mod $q)$-arcs in finite projective geometries, Annuaire de l' Univ. de Sofia, 102 (2015), to appear.

    [15]

    G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes, Inform. Control, 8 (1965) 170-179.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(250) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return