August  2016, 10(3): 601-611. doi: 10.3934/amc.2016029

The non-existence of $(104,22;3,5)$-arcs

1. 

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl. 8, Sofia 1113

2. 

Faculty of Mathematics and Informatics, Sofia University, 5, James Bourchier blvd., 1164 Sofia, Bulgaria

Received  May 2015 Revised  September 2015 Published  August 2016

Using some recent results about multiple extendability of arcs and codes, we prove the nonexistence of $(104,22)$-arcs in $PG(3,5)$. This implies the non-existence of Griesmer $[104,4,82]_5$-codes and settles one of the four remaining open cases for the main problem of coding theory for $q=5,k=4,d=82$.
Citation: Ivan Landjev, Assia Rousseva. The non-existence of $(104,22;3,5)$-arcs. Advances in Mathematics of Communications, 2016, 10 (3) : 601-611. doi: 10.3934/amc.2016029
References:
[1]

S. Ball, On intersection sets in Desarguesian affine spaces,, European J. Combin., 21 (2000), 441.  doi: 10.1006/eujc.2000.0350.  Google Scholar

[2]

I. Boukliev, Optimal Linear Codes - Constructions and Bounds,, Ph.D thesis, (1996).   Google Scholar

[3]

S. Dodunekov and J. Simonis, Codes and projective multisets,, Electr. J. Combin., 5 (1998).   Google Scholar

[4]

Y. Edel and I. Landjev, On multiple caps in finite projective spaces,, Des. Codes Cryptogr., 56 (2010), 163.  doi: 10.1007/s10623-010-9398-4.  Google Scholar

[5]

J. H. Griesmer, A bound for error-correcting codes,, IBM J. Res. Develop., 4 (1960), 532.   Google Scholar

[6]

R. Hill, Optimal linear codes,, in Cryptography and Coding (ed. C. Mitchell), (1992), 75.   Google Scholar

[7]

R. Hill and E. Kolev, A survey of recent results on optimal linear codes,, in Combinatorial Designs and their Application (eds. F.C. Holroyd, (1999), 127.   Google Scholar

[8]

I. Landjev, The geometry of $(n,3)$-arcs in the projective plane of order 5,, in Proc. 6th Workshop ACCT, (1996), 170.   Google Scholar

[9]

I. Landjev and A. Rousseva, On the Extendability of Griesmer Arcs,, Ann. Sof. Univ. Fac. Math. Inf., 101 (2013), 183.   Google Scholar

[10]

I. Landjev, A. Rousseva and L. Storme, On the extendability of quasidivisible Griesmer arcs,, Des. Codes Cryptogr., 79 (2016), 535.  doi: 10.1007/s10623-015-0114-2.  Google Scholar

[11]

I. Landjev and L. Storme, Linear codes and Galois geometries,, in Current Research Topics in Galois Geometries (eds. L. Storme and J. De Beule), (2012), 187.   Google Scholar

[12]

T. Maruta, A new extension theorem for linear codes,, Finite Fields Appl., 10 (2004), 674.  doi: 10.1016/j.ffa.2004.02.001.  Google Scholar

[13]

T. Maruta, http://www.mi.s.oskafu-u.ac.jp/~maruta/griesmer.htm, , ().   Google Scholar

[14]

A. Rousseva, On the structure of $(t$ mod $q)$-arcs in finite projective geometries,, Annuaire de l' Univ. de Sofia, 102 (2015).   Google Scholar

[15]

G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes,, Inform. Control, 8 (1965), 170.   Google Scholar

show all references

References:
[1]

S. Ball, On intersection sets in Desarguesian affine spaces,, European J. Combin., 21 (2000), 441.  doi: 10.1006/eujc.2000.0350.  Google Scholar

[2]

I. Boukliev, Optimal Linear Codes - Constructions and Bounds,, Ph.D thesis, (1996).   Google Scholar

[3]

S. Dodunekov and J. Simonis, Codes and projective multisets,, Electr. J. Combin., 5 (1998).   Google Scholar

[4]

Y. Edel and I. Landjev, On multiple caps in finite projective spaces,, Des. Codes Cryptogr., 56 (2010), 163.  doi: 10.1007/s10623-010-9398-4.  Google Scholar

[5]

J. H. Griesmer, A bound for error-correcting codes,, IBM J. Res. Develop., 4 (1960), 532.   Google Scholar

[6]

R. Hill, Optimal linear codes,, in Cryptography and Coding (ed. C. Mitchell), (1992), 75.   Google Scholar

[7]

R. Hill and E. Kolev, A survey of recent results on optimal linear codes,, in Combinatorial Designs and their Application (eds. F.C. Holroyd, (1999), 127.   Google Scholar

[8]

I. Landjev, The geometry of $(n,3)$-arcs in the projective plane of order 5,, in Proc. 6th Workshop ACCT, (1996), 170.   Google Scholar

[9]

I. Landjev and A. Rousseva, On the Extendability of Griesmer Arcs,, Ann. Sof. Univ. Fac. Math. Inf., 101 (2013), 183.   Google Scholar

[10]

I. Landjev, A. Rousseva and L. Storme, On the extendability of quasidivisible Griesmer arcs,, Des. Codes Cryptogr., 79 (2016), 535.  doi: 10.1007/s10623-015-0114-2.  Google Scholar

[11]

I. Landjev and L. Storme, Linear codes and Galois geometries,, in Current Research Topics in Galois Geometries (eds. L. Storme and J. De Beule), (2012), 187.   Google Scholar

[12]

T. Maruta, A new extension theorem for linear codes,, Finite Fields Appl., 10 (2004), 674.  doi: 10.1016/j.ffa.2004.02.001.  Google Scholar

[13]

T. Maruta, http://www.mi.s.oskafu-u.ac.jp/~maruta/griesmer.htm, , ().   Google Scholar

[14]

A. Rousseva, On the structure of $(t$ mod $q)$-arcs in finite projective geometries,, Annuaire de l' Univ. de Sofia, 102 (2015).   Google Scholar

[15]

G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes,, Inform. Control, 8 (1965), 170.   Google Scholar

[1]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[2]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[3]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[4]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[5]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[6]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[7]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[8]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[9]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[10]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[11]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[12]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[13]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[14]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[15]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[16]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[17]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[18]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

[19]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[20]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]