August  2016, 10(3): 601-611. doi: 10.3934/amc.2016029

The non-existence of $(104,22;3,5)$-arcs

1. 

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl. 8, Sofia 1113

2. 

Faculty of Mathematics and Informatics, Sofia University, 5, James Bourchier blvd., 1164 Sofia, Bulgaria

Received  May 2015 Revised  September 2015 Published  August 2016

Using some recent results about multiple extendability of arcs and codes, we prove the nonexistence of $(104,22)$-arcs in $PG(3,5)$. This implies the non-existence of Griesmer $[104,4,82]_5$-codes and settles one of the four remaining open cases for the main problem of coding theory for $q=5,k=4,d=82$.
Citation: Ivan Landjev, Assia Rousseva. The non-existence of $(104,22;3,5)$-arcs. Advances in Mathematics of Communications, 2016, 10 (3) : 601-611. doi: 10.3934/amc.2016029
References:
[1]

S. Ball, On intersection sets in Desarguesian affine spaces,, European J. Combin., 21 (2000), 441.  doi: 10.1006/eujc.2000.0350.  Google Scholar

[2]

I. Boukliev, Optimal Linear Codes - Constructions and Bounds,, Ph.D thesis, (1996).   Google Scholar

[3]

S. Dodunekov and J. Simonis, Codes and projective multisets,, Electr. J. Combin., 5 (1998).   Google Scholar

[4]

Y. Edel and I. Landjev, On multiple caps in finite projective spaces,, Des. Codes Cryptogr., 56 (2010), 163.  doi: 10.1007/s10623-010-9398-4.  Google Scholar

[5]

J. H. Griesmer, A bound for error-correcting codes,, IBM J. Res. Develop., 4 (1960), 532.   Google Scholar

[6]

R. Hill, Optimal linear codes,, in Cryptography and Coding (ed. C. Mitchell), (1992), 75.   Google Scholar

[7]

R. Hill and E. Kolev, A survey of recent results on optimal linear codes,, in Combinatorial Designs and their Application (eds. F.C. Holroyd, (1999), 127.   Google Scholar

[8]

I. Landjev, The geometry of $(n,3)$-arcs in the projective plane of order 5,, in Proc. 6th Workshop ACCT, (1996), 170.   Google Scholar

[9]

I. Landjev and A. Rousseva, On the Extendability of Griesmer Arcs,, Ann. Sof. Univ. Fac. Math. Inf., 101 (2013), 183.   Google Scholar

[10]

I. Landjev, A. Rousseva and L. Storme, On the extendability of quasidivisible Griesmer arcs,, Des. Codes Cryptogr., 79 (2016), 535.  doi: 10.1007/s10623-015-0114-2.  Google Scholar

[11]

I. Landjev and L. Storme, Linear codes and Galois geometries,, in Current Research Topics in Galois Geometries (eds. L. Storme and J. De Beule), (2012), 187.   Google Scholar

[12]

T. Maruta, A new extension theorem for linear codes,, Finite Fields Appl., 10 (2004), 674.  doi: 10.1016/j.ffa.2004.02.001.  Google Scholar

[13]

T. Maruta, http://www.mi.s.oskafu-u.ac.jp/~maruta/griesmer.htm, , ().   Google Scholar

[14]

A. Rousseva, On the structure of $(t$ mod $q)$-arcs in finite projective geometries,, Annuaire de l' Univ. de Sofia, 102 (2015).   Google Scholar

[15]

G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes,, Inform. Control, 8 (1965), 170.   Google Scholar

show all references

References:
[1]

S. Ball, On intersection sets in Desarguesian affine spaces,, European J. Combin., 21 (2000), 441.  doi: 10.1006/eujc.2000.0350.  Google Scholar

[2]

I. Boukliev, Optimal Linear Codes - Constructions and Bounds,, Ph.D thesis, (1996).   Google Scholar

[3]

S. Dodunekov and J. Simonis, Codes and projective multisets,, Electr. J. Combin., 5 (1998).   Google Scholar

[4]

Y. Edel and I. Landjev, On multiple caps in finite projective spaces,, Des. Codes Cryptogr., 56 (2010), 163.  doi: 10.1007/s10623-010-9398-4.  Google Scholar

[5]

J. H. Griesmer, A bound for error-correcting codes,, IBM J. Res. Develop., 4 (1960), 532.   Google Scholar

[6]

R. Hill, Optimal linear codes,, in Cryptography and Coding (ed. C. Mitchell), (1992), 75.   Google Scholar

[7]

R. Hill and E. Kolev, A survey of recent results on optimal linear codes,, in Combinatorial Designs and their Application (eds. F.C. Holroyd, (1999), 127.   Google Scholar

[8]

I. Landjev, The geometry of $(n,3)$-arcs in the projective plane of order 5,, in Proc. 6th Workshop ACCT, (1996), 170.   Google Scholar

[9]

I. Landjev and A. Rousseva, On the Extendability of Griesmer Arcs,, Ann. Sof. Univ. Fac. Math. Inf., 101 (2013), 183.   Google Scholar

[10]

I. Landjev, A. Rousseva and L. Storme, On the extendability of quasidivisible Griesmer arcs,, Des. Codes Cryptogr., 79 (2016), 535.  doi: 10.1007/s10623-015-0114-2.  Google Scholar

[11]

I. Landjev and L. Storme, Linear codes and Galois geometries,, in Current Research Topics in Galois Geometries (eds. L. Storme and J. De Beule), (2012), 187.   Google Scholar

[12]

T. Maruta, A new extension theorem for linear codes,, Finite Fields Appl., 10 (2004), 674.  doi: 10.1016/j.ffa.2004.02.001.  Google Scholar

[13]

T. Maruta, http://www.mi.s.oskafu-u.ac.jp/~maruta/griesmer.htm, , ().   Google Scholar

[14]

A. Rousseva, On the structure of $(t$ mod $q)$-arcs in finite projective geometries,, Annuaire de l' Univ. de Sofia, 102 (2015).   Google Scholar

[15]

G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes,, Inform. Control, 8 (1965), 170.   Google Scholar

[1]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[2]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[3]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[4]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[5]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[6]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[7]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[8]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[9]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[10]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[11]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]