August  2016, 10(3): 633-642. doi: 10.3934/amc.2016031

On self-dual MRD codes

1. 

Lehrstuhl D für Mathematik, RWTH Aachen University, 52056 Aachen

2. 

Fakultät für Mathematik, Otto-von-Guericke Universität, Magdeburg, Germany

Received  May 2015 Revised  December 2015 Published  August 2016

We investigate self-dual MRD codes. In particular we prove that a Gabidulin code in $(\mathbb{F}_q)^{n\times n}$ is equivalent to a self-dual code if and only if its dimension is $n^2/2$, $n \equiv 2 \pmod 4$, and $q \equiv 3 \pmod 4$. On the way we determine the full automorphism group of Gabidulin codes in $(\mathbb{F}_q)^{n\times n}$.
Citation: Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031
References:
[1]

T. Berger, Isometries for rank distance and permutation group of Gabidulin codes,, in Proc. ACCT'8, (2002), 30.  doi: 10.1109/TIT.2003.819322.  Google Scholar

[2]

P. Delsarte, Bilinear forms over a finite field with applications to coding theory,, J. Comb. Theory A, 25 (1978), 226.  doi: 10.1016/0097-3165(78)90015-8.  Google Scholar

[3]

E. Gabidulin, Theory of codes with maximum rank distance,, Probl. Inf. Transm., 21 (1985), 1.   Google Scholar

[4]

B. Huppert, Endliche Gruppen I,, Springer-Verlag, (1967).   Google Scholar

[5]

A. Lempel and G. Seroussi, Factorization of symmetric matrices and trace-orthogonal bases in finite fields,, SIAM J. Comput., 9 (1980), 758.  doi: 10.1137/0209059.  Google Scholar

[6]

R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications,, Cambridge Univ. Press, (1994).  doi: 10.1017/CBO9781139172769.  Google Scholar

[7]

K. Morrison, Equivalence for rank-metric and matrix codes and automorphism groups of Gabidulin codes,, IEEE Trans. Inform. Theory, 60 (2014), 7035.  doi: 10.1109/TIT.2014.2359198.  Google Scholar

[8]

K. Morrison, An enumeration of the equivalence classes of self-dual matrix codes,, Adv. Math. Commun., 9 (2015), 415.  doi: 10.3934/amc.2015.9.415.  Google Scholar

[9]

A. Ravagnani, Rank-metric codes and their duality theory,, Des. Codes Cryptogr., 80 (2016), 197.  doi: 10.1007/s10623-015-0077-3.  Google Scholar

[10]

W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der mathematischen Wissenschaften 270,, Springer-Verlag, (1985).  doi: 10.1007/978-3-642-69971-9.  Google Scholar

[11]

J. Sheekey, A new family of linear maximum rank distance codes,, preprint, ().   Google Scholar

[12]

Z.-X. Wan, Geometry of Matrices,, World Scientific, (1996).  doi: 10.1142/9789812830234.  Google Scholar

show all references

References:
[1]

T. Berger, Isometries for rank distance and permutation group of Gabidulin codes,, in Proc. ACCT'8, (2002), 30.  doi: 10.1109/TIT.2003.819322.  Google Scholar

[2]

P. Delsarte, Bilinear forms over a finite field with applications to coding theory,, J. Comb. Theory A, 25 (1978), 226.  doi: 10.1016/0097-3165(78)90015-8.  Google Scholar

[3]

E. Gabidulin, Theory of codes with maximum rank distance,, Probl. Inf. Transm., 21 (1985), 1.   Google Scholar

[4]

B. Huppert, Endliche Gruppen I,, Springer-Verlag, (1967).   Google Scholar

[5]

A. Lempel and G. Seroussi, Factorization of symmetric matrices and trace-orthogonal bases in finite fields,, SIAM J. Comput., 9 (1980), 758.  doi: 10.1137/0209059.  Google Scholar

[6]

R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications,, Cambridge Univ. Press, (1994).  doi: 10.1017/CBO9781139172769.  Google Scholar

[7]

K. Morrison, Equivalence for rank-metric and matrix codes and automorphism groups of Gabidulin codes,, IEEE Trans. Inform. Theory, 60 (2014), 7035.  doi: 10.1109/TIT.2014.2359198.  Google Scholar

[8]

K. Morrison, An enumeration of the equivalence classes of self-dual matrix codes,, Adv. Math. Commun., 9 (2015), 415.  doi: 10.3934/amc.2015.9.415.  Google Scholar

[9]

A. Ravagnani, Rank-metric codes and their duality theory,, Des. Codes Cryptogr., 80 (2016), 197.  doi: 10.1007/s10623-015-0077-3.  Google Scholar

[10]

W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der mathematischen Wissenschaften 270,, Springer-Verlag, (1985).  doi: 10.1007/978-3-642-69971-9.  Google Scholar

[11]

J. Sheekey, A new family of linear maximum rank distance codes,, preprint, ().   Google Scholar

[12]

Z.-X. Wan, Geometry of Matrices,, World Scientific, (1996).  doi: 10.1142/9789812830234.  Google Scholar

[1]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[2]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[3]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[4]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[5]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (94)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]