August  2016, 10(3): 633-642. doi: 10.3934/amc.2016031

On self-dual MRD codes

1. 

Lehrstuhl D für Mathematik, RWTH Aachen University, 52056 Aachen

2. 

Fakultät für Mathematik, Otto-von-Guericke Universität, Magdeburg, Germany

Received  May 2015 Revised  December 2015 Published  August 2016

We investigate self-dual MRD codes. In particular we prove that a Gabidulin code in $(\mathbb{F}_q)^{n\times n}$ is equivalent to a self-dual code if and only if its dimension is $n^2/2$, $n \equiv 2 \pmod 4$, and $q \equiv 3 \pmod 4$. On the way we determine the full automorphism group of Gabidulin codes in $(\mathbb{F}_q)^{n\times n}$.
Citation: Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031
References:
[1]

T. Berger, Isometries for rank distance and permutation group of Gabidulin codes,, in Proc. ACCT'8, (2002), 30. doi: 10.1109/TIT.2003.819322. Google Scholar

[2]

P. Delsarte, Bilinear forms over a finite field with applications to coding theory,, J. Comb. Theory A, 25 (1978), 226. doi: 10.1016/0097-3165(78)90015-8. Google Scholar

[3]

E. Gabidulin, Theory of codes with maximum rank distance,, Probl. Inf. Transm., 21 (1985), 1. Google Scholar

[4]

B. Huppert, Endliche Gruppen I,, Springer-Verlag, (1967). Google Scholar

[5]

A. Lempel and G. Seroussi, Factorization of symmetric matrices and trace-orthogonal bases in finite fields,, SIAM J. Comput., 9 (1980), 758. doi: 10.1137/0209059. Google Scholar

[6]

R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications,, Cambridge Univ. Press, (1994). doi: 10.1017/CBO9781139172769. Google Scholar

[7]

K. Morrison, Equivalence for rank-metric and matrix codes and automorphism groups of Gabidulin codes,, IEEE Trans. Inform. Theory, 60 (2014), 7035. doi: 10.1109/TIT.2014.2359198. Google Scholar

[8]

K. Morrison, An enumeration of the equivalence classes of self-dual matrix codes,, Adv. Math. Commun., 9 (2015), 415. doi: 10.3934/amc.2015.9.415. Google Scholar

[9]

A. Ravagnani, Rank-metric codes and their duality theory,, Des. Codes Cryptogr., 80 (2016), 197. doi: 10.1007/s10623-015-0077-3. Google Scholar

[10]

W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der mathematischen Wissenschaften 270,, Springer-Verlag, (1985). doi: 10.1007/978-3-642-69971-9. Google Scholar

[11]

J. Sheekey, A new family of linear maximum rank distance codes,, preprint, (). Google Scholar

[12]

Z.-X. Wan, Geometry of Matrices,, World Scientific, (1996). doi: 10.1142/9789812830234. Google Scholar

show all references

References:
[1]

T. Berger, Isometries for rank distance and permutation group of Gabidulin codes,, in Proc. ACCT'8, (2002), 30. doi: 10.1109/TIT.2003.819322. Google Scholar

[2]

P. Delsarte, Bilinear forms over a finite field with applications to coding theory,, J. Comb. Theory A, 25 (1978), 226. doi: 10.1016/0097-3165(78)90015-8. Google Scholar

[3]

E. Gabidulin, Theory of codes with maximum rank distance,, Probl. Inf. Transm., 21 (1985), 1. Google Scholar

[4]

B. Huppert, Endliche Gruppen I,, Springer-Verlag, (1967). Google Scholar

[5]

A. Lempel and G. Seroussi, Factorization of symmetric matrices and trace-orthogonal bases in finite fields,, SIAM J. Comput., 9 (1980), 758. doi: 10.1137/0209059. Google Scholar

[6]

R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications,, Cambridge Univ. Press, (1994). doi: 10.1017/CBO9781139172769. Google Scholar

[7]

K. Morrison, Equivalence for rank-metric and matrix codes and automorphism groups of Gabidulin codes,, IEEE Trans. Inform. Theory, 60 (2014), 7035. doi: 10.1109/TIT.2014.2359198. Google Scholar

[8]

K. Morrison, An enumeration of the equivalence classes of self-dual matrix codes,, Adv. Math. Commun., 9 (2015), 415. doi: 10.3934/amc.2015.9.415. Google Scholar

[9]

A. Ravagnani, Rank-metric codes and their duality theory,, Des. Codes Cryptogr., 80 (2016), 197. doi: 10.1007/s10623-015-0077-3. Google Scholar

[10]

W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der mathematischen Wissenschaften 270,, Springer-Verlag, (1985). doi: 10.1007/978-3-642-69971-9. Google Scholar

[11]

J. Sheekey, A new family of linear maximum rank distance codes,, preprint, (). Google Scholar

[12]

Z.-X. Wan, Geometry of Matrices,, World Scientific, (1996). doi: 10.1142/9789812830234. Google Scholar

[1]

Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503

[2]

Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261

[3]

Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027

[4]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[5]

Anna-Lena Horlemann-Trautmann, Kyle Marshall. New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 533-548. doi: 10.3934/amc.2017042

[6]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[7]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

[8]

Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002

[9]

W. Cary Huffman. Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order. Advances in Mathematics of Communications, 2013, 7 (1) : 57-90. doi: 10.3934/amc.2013.7.57

[10]

W. Cary Huffman. Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357-398. doi: 10.3934/amc.2007.1.357

[11]

Nikolay Yankov. Self-dual [62, 31, 12] and [64, 32, 12] codes with an automorphism of order 7. Advances in Mathematics of Communications, 2014, 8 (1) : 73-81. doi: 10.3934/amc.2014.8.73

[12]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[13]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[14]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[15]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[16]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[17]

M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281

[18]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[19]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[20]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]