\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Constructions and bounds for mixed-dimension subspace codes

Abstract Related Papers Cited by
  • Codes in finite projective spaces equipped with the subspace distance have been proposed for error control in random linear network coding. The resulting so-called Main Problem of Subspace Coding is to determine the maximum size $A_q(v,d)$ of a code in $PG(v-1,\mathbb{F}_q)$ with minimum subspace distance $d$. Here we completely resolve this problem for $d\ge v-1$. For $d=v-2$ we present some improved bounds and determine $A_q(5,3)=2q^3+2$ (all $q$), $A_2(7,5)=34$. We also provide an exposition of the known determination of $A_q(v,2)$, and a table with exact results and bounds for the numbers $A_2(v,d)$, $v\leq 7$.
    Mathematics Subject Classification: Primary: 94B05, 05B25, 51E20; Secondary: 51E14, 51E22, 51E23.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Ahlswede and H. Aydinian, On error control codes for random network coding, in IEEE Workshop Network Coding Theory Appl., 2009, 68-73.doi: 10.1109/NETCOD.2009.5191396.

    [2]

    C. Bachoc, A. Passuello, and F. Vallentin, Bounds for projective codes from semidefinite programming, Adv. Math. Commun., 7 (2013), 127-145.doi: 10.3934/amc.2013.7.127.

    [3]

    J. De Beule and L. Storme, Current Research Topics in Galois Geometry, Nova Science Publishers, 2011.

    [4]

    A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Z., 145 (1975), 211-230. Corrigendum, ibid., 147 (1976), 303.doi: 10.1007/BF01215286.

    [5]

    M. Braun and J. Reichelt, $q$-analogs of packing designs, J. Combin. Des., 22 (2014), 306-321.doi: 10.1002/jcd.21376.

    [6]

    P. J. Cameron and J. H. van Lint, Graphs, Codes and Designs, Cambridge Univ. Press, 1980. A revised edition of these notes is [7].

    [7]

    P. J. Cameron and J. H. van Lint, Designs, Graphs, Codes and their Links, Cambridge Univ. Press, 1991. Revised edition of [6].doi: 10.1017/CBO9780511623714.

    [8]

    A. Cossidente, F. Pavese and L. Storme, Optimal subspace codes in $PG(4,q)$, in preparation.

    [9]

    T. Czerwinski and D. Oakden, The translation planes of order twenty-five, J. Combin. Theory Ser. A, 59 (1992), 193-217.doi: 10.1016/0097-3165(92)90065-3.

    [10]

    P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.doi: 10.1016/0097-3165(78)90015-8.

    [11]

    P. Dembowski, Finite Geometries, Springer-Verlag, 1968.doi: 10.1007/978-3-642-62012-6.

    [12]

    U. Dempwolff, Translation planes of order 27, Des. Codes Cryptogr., 4 (1994), 105-121. Erratum, ibid., 5 (1995), 81.doi: 10.1007/BF01578865.

    [13]

    U. Dempwolff and A. Reifart, The classification of the translation planes of order 16, I, Geom. Dedicata, 15 (1983), 137-153.doi: 10.1007/BF00147760.

    [14]

    J. Eisfeld and L. Storme, (Partial) $t$-Spreads and Minimal $t$-Covers in Finite Projective Spaces, Lecture notes, Ghent Univ., 2000.

    [15]

    T. Etzion, Problems on $q$-analogs in coding theory, preprint, arXiv:1305.6126

    [16]

    T. Etzion and N. Silberstein, Codes and designs related to lifted MRD codes, IEEE Trans. Inform. Theory, 59 (2013), 1004-1017. Erratum, ibid., 59 (2013), 4730.doi: 10.1109/TIT.2012.2220119.

    [17]

    T. Etzion and L. Storme, Galois geometries and coding theory, Des. Codes Cryptogr., 78 (2016), 311-350.doi: 10.1007/s10623-015-0156-5.

    [18]

    T. Etzion and A. Vardy, Error-correcting codes in projective space, IEEE Trans. Inform. Theory, 57 (2011), 1165-1173.doi: 10.1109/TIT.2010.2095232.

    [19]

    T. Feulner, The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes, Adv. Math. Commun., 3 (2009), 363-383.doi: 10.3934/amc.2009.3.363.

    [20]

    T. Feulner, Canonical forms and automorphisms in the projective space, preprint, arXiv:1305.1193

    [21]

    T. Feulner, Eine kanonische Form zur Darstellung äquivalenter Codes - Computergestützte Berechnung und ihre Anwendung in der Codierungstheorie, Kryptographie und Geometrie, Ph.D thesis, Univ. Bayreuth, 2014. Available online at https://epub.uni-bayreuth.de/42/

    [22]

    E. M. Gabidulin and M. Bossert, Algebraic codes for network coding, Probl. Inform. Transm., 45 (2009), 343-356.doi: 10.1134/S003294600904005X.

    [23]

    J. Galambos and I. Simonelli, Bonferroni-Type Inequalities with Applications, Springer-Verlag, 1996.

    [24]

    N. A. Gordon, R. Shaw and L. H. Soicher, Classification of partial spreads in $\PG(4,2)$, available online at http://www.maths.qmul.ac.uk/~leonard/partialspreads/PG42new.pdf

    [25]

    X. Guang and Z. Zhang, Linear Network Error Correction Coding, Springer-Verlag, 2014.doi: 10.1007/978-1-4939-0588-1.

    [26]

    M. Hall, Jr., J. D. Swift and R. J. Walker, Uniqueness of the projective plane of order eight, Math. Comp., 10 (1956), 186-194.doi: 10.2307/2001913.

    [27]

    D. Heinlein, M. Kiermaier, S. Kurz and A. Wassermann, Tables of subspace codes, preprint, arXiv:1601.02864

    [28]

    J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford Univ. Press, 1985.

    [29]

    J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Oxford Univ. Press, 1998.

    [30]

    J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Oxford Univ. Press, 1991.doi: 10.1007/978-1-4471-6790-7.

    [31]

    T. Honold and M. Kiermaier, On putative $q$-analogues of the Fano plane and related combinatorial structures, in Dynamical Systems, Number Theory and Applications: A Festschrift in Honor of Armin Leutbecher's 80th Birthday (eds. T. Hagen, F. Rupp and J. Scheurle), World Scientific, 2016, 141-175. Available online at arXiv:1504.06688doi: 10.1142/9789814699877_0008.

    [32]

    T. Honold, M. Kiermaier and S. Kurz, Optimal binary subspace codes of length $6$, constant dimension $3$ and minimum subspace distance $4$, in 11th Int. Conf. Finite Fields Appl., 2013, Magdeburg, 2015, 157-176.doi: 10.1090/conm/632/12627.

    [33]

    T. Honold, M. Kiermaier and S. Kurz, Classification of large partial plane spreads in $\PG(6,\mathbbF_2)$ and related combinatorial objects, submitted. Available online at arXiv:1606.07655

    [34]

    N. L. Johnson, V. Jha and M. Biliotti, Handbook of Finite Translation Planes, CRC Press, 2007.doi: 10.1201/9781420011142.

    [35]

    D. J. Kleitman, On an extremal property of antichains in partial orders. The LYM property and some of its implications and applications, in Combinatorics, Springer, 1975, 277-290.doi: 10.1007/978-94-010-1826-5_14.

    [36]

    R. Koetter and F. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591.doi: 10.1109/TIT.2008.926449.

    [37]

    J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge Univ. Press, 1992.

    [38]

    H. Liu and T. Honold, Poster: A new approach to the main problem of subspace coding, in 9th Int. Conf. Commun. Netw. China (ChinaCom 2014), 2014, 676-677.doi: 10.1109/CHINACOM.2014.7054392.

    [39]

    F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing Company, Amsterdam, 1977.

    [40]

    R. Mathon and G. F. Royle, The translation planes of order 49, Des. Codes Cryptogr., 5 (1995), 57-72.doi: 10.1007/BF01388504.

    [41]

    B. D. McKay and A. Piperno, Practical graph isomorphism II, J. Symb. Comput., 60 (2014), 94-112.doi: 10.1016/j.jsc.2013.09.003.

    [42]

    G. E. Moorhouse, Two-graphs and skew two-graphs in finite geometries, Linear Algebra Appl., 226-228 (1995), 529-551.doi: 10.1016/0024-3795(95)00242-J.

    [43]

    S. Niskanen and P. R. J. Östergård, Cliquer User's Guide, Version 1.0, Commun. Lab., Helsinki Univ. Techn., Finland, Tech. Rep. T48, 2003.

    [44]

    D. Silva, F. Kschischang and R. Koetter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3951-3967.doi: 10.1109/TIT.2008.928291.

    [45]

    D. Silva, F. Kschischang and R. Koetter, Communication over finite-field matrix channels, IEEE Trans. Inform. Theory, 56 (2010), 1296-1306.doi: 10.1109/TIT.2009.2039167.

    [46]

    A.-L. Trautmann, Isometry and automorphisms of constant dimension codes, Adv. Math. Commun., 7 (2013), 147-160.doi: 10.3934/amc.2013.7.147.

    [47]

    R. W. Yeung and N. Cai, Network error correction, part I: Basic concepts and upper bounds, Commun. Inform. Syst., 6 (2006), 19-35.

    [48]

    R. W. Yeung and N. Cai, Network error correction, part II: Lower bounds, Commun. Inform. Syst., 6 (2006), 37-54.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(198) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return