-
Previous Article
Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights
- AMC Home
- This Issue
- Next Article
Some constacyclic codes over finite chain rings
1. | Faculty of Mathematics, USTHB, Algiers, Algeria |
2. | Faculty of Mathematics, University of Science and Technology, USTHB, Algeria |
3. | Department of Electrical and Computer Engineering, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, Canada |
References:
[1] |
A. Batoul, K. Guenda and T. A. Gulliver, On self-dual cyclic codes over finite chain rings,, Des. Codes Cryptogr., 70 (2014), 347.
doi: 10.1007/s10623-012-9696-0. |
[2] |
H. Dinh, On the linear ordering of some classes of negacyclic and cyclic codes and their distributions,, Finite Fields Appl., 14 (2008), 22.
doi: 10.1016/j.ffa.2007.07.001. |
[3] |
H. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings,, IEEE Trans. Inform. Theory, 50 (2004), 1728.
doi: 10.1109/TIT.2004.831789. |
[4] |
S. T. Dougherty, J. L. Kim and H. Liu, Construction of self-dual codes over finite commutative chain rings,, Int. J. Inform. Coding Theory, 1 (2010), 171.
doi: 10.1504/IJICoT.2010.032133. |
[5] |
G. D. Forney, N. J. A. Sloane and M. Trott, The Nordstrom-Robinson code is the binary image of the octacode,, in DIMACS/IEEE Workshop Coding Quantiz., (1993).
|
[6] |
M. Greferath and S. E. Shmidt, Finite-ring combinatorics and Macwilliam's equivalence theorem,, J. Combin. Theory A, 92 (2000), 17.
doi: 10.1006/jcta.1999.3033. |
[7] |
K. Guenda and T. A. Gulliver, MDS and self-dual codes over rings,, Finite Fields Appl., 18 (2012), 1061.
doi: 10.1016/j.ffa.2012.09.003. |
[8] |
K. Guenda and T. A. Gulliver, Self-dual repeated root cyclic and negacyclic codes over finite fields,, in Proc. IEEE Int. Symp. Inform. Theory, (2012), 2904.
doi: 10.1109/ISIT.2012.6284057. |
[9] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes,, Cambridge Univ. Press, (2003).
doi: 10.1017/CBO9780511807077. |
[10] |
P. Kanwar and S. R. López-Permouth, Cyclic codes over the integers modulo $p^m$,, Finite Fields Appl., 3 (1997), 334.
doi: 10.1006/ffta.1997.0189. |
[11] |
S. R. López-Permouth and S. Szabo, Repeated root cyclic and negacyclic codes over Galois rings,, in Appl. Alg. Eng. Com. Comp., (2009), 219.
doi: 10.3934/amc.2009.3.409. |
[12] |
F. J. MacWilliams, Combinatorial Properties of Elementary Abelian Groups,, Ph.D. thesis, (1962). Google Scholar |
[13] |
B. R. McDonald, Finite Rings with Identity,, Marcel Dekker, (1974).
|
[14] |
A. A. Nechaev and T. Khonol'd, Weighted modules and representations of codes (in Russian),, Probl. Peredachi Inform., 35 (1999), 18.
|
[15] |
G. H. Norton and A. Sălăgean, On the structure of linear and cyclic codes over a finite chain ring,, Appl. Algebra Engr. Comm. Comput., 10 (2000), 489.
doi: 10.1007/PL00012382. |
[16] |
J. Wood, Extension theorems for linear codes over finite rings,, in Appl. Alg. Eng. Com. Comp. (eds. T. Mora and H. Matson), (1997), 329.
doi: 10.1007/3-540-63163-1_26. |
show all references
References:
[1] |
A. Batoul, K. Guenda and T. A. Gulliver, On self-dual cyclic codes over finite chain rings,, Des. Codes Cryptogr., 70 (2014), 347.
doi: 10.1007/s10623-012-9696-0. |
[2] |
H. Dinh, On the linear ordering of some classes of negacyclic and cyclic codes and their distributions,, Finite Fields Appl., 14 (2008), 22.
doi: 10.1016/j.ffa.2007.07.001. |
[3] |
H. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings,, IEEE Trans. Inform. Theory, 50 (2004), 1728.
doi: 10.1109/TIT.2004.831789. |
[4] |
S. T. Dougherty, J. L. Kim and H. Liu, Construction of self-dual codes over finite commutative chain rings,, Int. J. Inform. Coding Theory, 1 (2010), 171.
doi: 10.1504/IJICoT.2010.032133. |
[5] |
G. D. Forney, N. J. A. Sloane and M. Trott, The Nordstrom-Robinson code is the binary image of the octacode,, in DIMACS/IEEE Workshop Coding Quantiz., (1993).
|
[6] |
M. Greferath and S. E. Shmidt, Finite-ring combinatorics and Macwilliam's equivalence theorem,, J. Combin. Theory A, 92 (2000), 17.
doi: 10.1006/jcta.1999.3033. |
[7] |
K. Guenda and T. A. Gulliver, MDS and self-dual codes over rings,, Finite Fields Appl., 18 (2012), 1061.
doi: 10.1016/j.ffa.2012.09.003. |
[8] |
K. Guenda and T. A. Gulliver, Self-dual repeated root cyclic and negacyclic codes over finite fields,, in Proc. IEEE Int. Symp. Inform. Theory, (2012), 2904.
doi: 10.1109/ISIT.2012.6284057. |
[9] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes,, Cambridge Univ. Press, (2003).
doi: 10.1017/CBO9780511807077. |
[10] |
P. Kanwar and S. R. López-Permouth, Cyclic codes over the integers modulo $p^m$,, Finite Fields Appl., 3 (1997), 334.
doi: 10.1006/ffta.1997.0189. |
[11] |
S. R. López-Permouth and S. Szabo, Repeated root cyclic and negacyclic codes over Galois rings,, in Appl. Alg. Eng. Com. Comp., (2009), 219.
doi: 10.3934/amc.2009.3.409. |
[12] |
F. J. MacWilliams, Combinatorial Properties of Elementary Abelian Groups,, Ph.D. thesis, (1962). Google Scholar |
[13] |
B. R. McDonald, Finite Rings with Identity,, Marcel Dekker, (1974).
|
[14] |
A. A. Nechaev and T. Khonol'd, Weighted modules and representations of codes (in Russian),, Probl. Peredachi Inform., 35 (1999), 18.
|
[15] |
G. H. Norton and A. Sălăgean, On the structure of linear and cyclic codes over a finite chain ring,, Appl. Algebra Engr. Comm. Comput., 10 (2000), 489.
doi: 10.1007/PL00012382. |
[16] |
J. Wood, Extension theorems for linear codes over finite rings,, in Appl. Alg. Eng. Com. Comp. (eds. T. Mora and H. Matson), (1997), 329.
doi: 10.1007/3-540-63163-1_26. |
[1] |
Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39 |
[2] |
Nuh Aydin, Yasemin Cengellenmis, Abdullah Dertli, Steven T. Dougherty, Esengül Saltürk. Skew constacyclic codes over the local Frobenius non-chain rings of order 16. Advances in Mathematics of Communications, 2020, 14 (1) : 53-67. doi: 10.3934/amc.2020005 |
[3] |
Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273 |
[4] |
Hai Q. Dinh, Hien D. T. Nguyen. On some classes of constacyclic codes over polynomial residue rings. Advances in Mathematics of Communications, 2012, 6 (2) : 175-191. doi: 10.3934/amc.2012.6.175 |
[5] |
Ferruh Özbudak, Patrick Solé. Gilbert-Varshamov type bounds for linear codes over finite chain rings. Advances in Mathematics of Communications, 2007, 1 (1) : 99-109. doi: 10.3934/amc.2007.1.99 |
[6] |
Anderson Silva, C. Polcino Milies. Cyclic codes of length $ 2p^n $ over finite chain rings. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020017 |
[7] |
Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395 |
[8] |
Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039 |
[9] |
Zihui Liu, Dajian Liao. Higher weights and near-MDR codes over chain rings. Advances in Mathematics of Communications, 2018, 12 (4) : 761-772. doi: 10.3934/amc.2018045 |
[10] |
Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039 |
[11] |
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543 |
[12] |
Alexandre Fotue-Tabue, Edgar Martínez-Moro, J. Thomas Blackford. On polycyclic codes over a finite chain ring. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020028 |
[13] |
Thomas Westerbäck. Parity check systems of nonlinear codes over finite commutative Frobenius rings. Advances in Mathematics of Communications, 2017, 11 (3) : 409-427. doi: 10.3934/amc.2017035 |
[14] |
David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131 |
[15] |
Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045 |
[16] |
Somphong Jitman, Ekkasit Sangwisut. The average dimension of the Hermitian hull of constacyclic codes over finite fields of square order. Advances in Mathematics of Communications, 2018, 12 (3) : 451-463. doi: 10.3934/amc.2018027 |
[17] |
Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004 |
[18] |
Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018 |
[19] |
Anuradha Sharma, Saroj Rani. Trace description and Hamming weights of irreducible constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 123-141. doi: 10.3934/amc.2018008 |
[20] |
Steven T. Dougherty, Esengül Saltürk, Steve Szabo. Codes over local rings of order 16 and binary codes. Advances in Mathematics of Communications, 2016, 10 (2) : 379-391. doi: 10.3934/amc.2016012 |
2018 Impact Factor: 0.879
Tools
Metrics
Other articles
by authors
[Back to Top]