November  2016, 10(4): 683-694. doi: 10.3934/amc.2016034

Some constacyclic codes over finite chain rings

1. 

Faculty of Mathematics, USTHB, Algiers, Algeria

2. 

Faculty of Mathematics, University of Science and Technology, USTHB, Algeria

3. 

Department of Electrical and Computer Engineering, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, Canada

Received  February 2014 Revised  December 2014 Published  November 2016

We give the structure of constacyclic codes over some chain rings. We also provide conditions on the equivalence between constacyclic codes and cyclic codes over finite chain rings.As a special case,we consider the structure of $(\alpha + \beta p)$-constacyclic codes of length $p^s$ over $GR(p^e,r)$.
Citation: Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034
References:
[1]

A. Batoul, K. Guenda and T. A. Gulliver, On self-dual cyclic codes over finite chain rings,, Des. Codes Cryptogr., 70 (2014), 347.  doi: 10.1007/s10623-012-9696-0.  Google Scholar

[2]

H. Dinh, On the linear ordering of some classes of negacyclic and cyclic codes and their distributions,, Finite Fields Appl., 14 (2008), 22.  doi: 10.1016/j.ffa.2007.07.001.  Google Scholar

[3]

H. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings,, IEEE Trans. Inform. Theory, 50 (2004), 1728.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[4]

S. T. Dougherty, J. L. Kim and H. Liu, Construction of self-dual codes over finite commutative chain rings,, Int. J. Inform. Coding Theory, 1 (2010), 171.  doi: 10.1504/IJICoT.2010.032133.  Google Scholar

[5]

G. D. Forney, N. J. A. Sloane and M. Trott, The Nordstrom-Robinson code is the binary image of the octacode,, in DIMACS/IEEE Workshop Coding Quantiz., (1993).   Google Scholar

[6]

M. Greferath and S. E. Shmidt, Finite-ring combinatorics and Macwilliam's equivalence theorem,, J. Combin. Theory A, 92 (2000), 17.  doi: 10.1006/jcta.1999.3033.  Google Scholar

[7]

K. Guenda and T. A. Gulliver, MDS and self-dual codes over rings,, Finite Fields Appl., 18 (2012), 1061.  doi: 10.1016/j.ffa.2012.09.003.  Google Scholar

[8]

K. Guenda and T. A. Gulliver, Self-dual repeated root cyclic and negacyclic codes over finite fields,, in Proc. IEEE Int. Symp. Inform. Theory, (2012), 2904.  doi: 10.1109/ISIT.2012.6284057.  Google Scholar

[9]

W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes,, Cambridge Univ. Press, (2003).  doi: 10.1017/CBO9780511807077.  Google Scholar

[10]

P. Kanwar and S. R. López-Permouth, Cyclic codes over the integers modulo $p^m$,, Finite Fields Appl., 3 (1997), 334.  doi: 10.1006/ffta.1997.0189.  Google Scholar

[11]

S. R. López-Permouth and S. Szabo, Repeated root cyclic and negacyclic codes over Galois rings,, in Appl. Alg. Eng. Com. Comp., (2009), 219.  doi: 10.3934/amc.2009.3.409.  Google Scholar

[12]

F. J. MacWilliams, Combinatorial Properties of Elementary Abelian Groups,, Ph.D. thesis, (1962).   Google Scholar

[13]

B. R. McDonald, Finite Rings with Identity,, Marcel Dekker, (1974).   Google Scholar

[14]

A. A. Nechaev and T. Khonol'd, Weighted modules and representations of codes (in Russian),, Probl. Peredachi Inform., 35 (1999), 18.   Google Scholar

[15]

G. H. Norton and A. Sălăgean, On the structure of linear and cyclic codes over a finite chain ring,, Appl. Algebra Engr. Comm. Comput., 10 (2000), 489.  doi: 10.1007/PL00012382.  Google Scholar

[16]

J. Wood, Extension theorems for linear codes over finite rings,, in Appl. Alg. Eng. Com. Comp. (eds. T. Mora and H. Matson), (1997), 329.  doi: 10.1007/3-540-63163-1_26.  Google Scholar

show all references

References:
[1]

A. Batoul, K. Guenda and T. A. Gulliver, On self-dual cyclic codes over finite chain rings,, Des. Codes Cryptogr., 70 (2014), 347.  doi: 10.1007/s10623-012-9696-0.  Google Scholar

[2]

H. Dinh, On the linear ordering of some classes of negacyclic and cyclic codes and their distributions,, Finite Fields Appl., 14 (2008), 22.  doi: 10.1016/j.ffa.2007.07.001.  Google Scholar

[3]

H. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings,, IEEE Trans. Inform. Theory, 50 (2004), 1728.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[4]

S. T. Dougherty, J. L. Kim and H. Liu, Construction of self-dual codes over finite commutative chain rings,, Int. J. Inform. Coding Theory, 1 (2010), 171.  doi: 10.1504/IJICoT.2010.032133.  Google Scholar

[5]

G. D. Forney, N. J. A. Sloane and M. Trott, The Nordstrom-Robinson code is the binary image of the octacode,, in DIMACS/IEEE Workshop Coding Quantiz., (1993).   Google Scholar

[6]

M. Greferath and S. E. Shmidt, Finite-ring combinatorics and Macwilliam's equivalence theorem,, J. Combin. Theory A, 92 (2000), 17.  doi: 10.1006/jcta.1999.3033.  Google Scholar

[7]

K. Guenda and T. A. Gulliver, MDS and self-dual codes over rings,, Finite Fields Appl., 18 (2012), 1061.  doi: 10.1016/j.ffa.2012.09.003.  Google Scholar

[8]

K. Guenda and T. A. Gulliver, Self-dual repeated root cyclic and negacyclic codes over finite fields,, in Proc. IEEE Int. Symp. Inform. Theory, (2012), 2904.  doi: 10.1109/ISIT.2012.6284057.  Google Scholar

[9]

W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes,, Cambridge Univ. Press, (2003).  doi: 10.1017/CBO9780511807077.  Google Scholar

[10]

P. Kanwar and S. R. López-Permouth, Cyclic codes over the integers modulo $p^m$,, Finite Fields Appl., 3 (1997), 334.  doi: 10.1006/ffta.1997.0189.  Google Scholar

[11]

S. R. López-Permouth and S. Szabo, Repeated root cyclic and negacyclic codes over Galois rings,, in Appl. Alg. Eng. Com. Comp., (2009), 219.  doi: 10.3934/amc.2009.3.409.  Google Scholar

[12]

F. J. MacWilliams, Combinatorial Properties of Elementary Abelian Groups,, Ph.D. thesis, (1962).   Google Scholar

[13]

B. R. McDonald, Finite Rings with Identity,, Marcel Dekker, (1974).   Google Scholar

[14]

A. A. Nechaev and T. Khonol'd, Weighted modules and representations of codes (in Russian),, Probl. Peredachi Inform., 35 (1999), 18.   Google Scholar

[15]

G. H. Norton and A. Sălăgean, On the structure of linear and cyclic codes over a finite chain ring,, Appl. Algebra Engr. Comm. Comput., 10 (2000), 489.  doi: 10.1007/PL00012382.  Google Scholar

[16]

J. Wood, Extension theorems for linear codes over finite rings,, in Appl. Alg. Eng. Com. Comp. (eds. T. Mora and H. Matson), (1997), 329.  doi: 10.1007/3-540-63163-1_26.  Google Scholar

[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[3]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[4]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[5]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[6]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[7]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[8]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[9]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (132)
  • HTML views (1)
  • Cited by (7)

Other articles
by authors

[Back to Top]