Citation: |
[1] |
E. Betti and M. Sala, A new bound for the minimum distance of a cyclic code from its defining set, IEEE Trans. Inform. Theory, 52 (2006), 3700-3706.doi: 10.1109/TIT.2006.876240. |
[2] |
Z. Chen and X. Du, Linear complexity and autocorrelation values of a polyphase generalized cyclotomic sequence of length $pq$, Front. Computer Sci. China, 4 (2010), 529-535. |
[3] |
T. Cusick, C. Ding and A. Renvall, Stream ciphers and number theory, North-Holland Math. Library, 55 (2004), 198-212. |
[4] |
C. Ding, Cyclic codes from APN and planar functions, preprint, arXiv:1206.4687 |
[5] |
C. Ding, Cyclic codes from cyclotomic sequences of order four, Finite Fields Appl., 23 (2012), 8-34.doi: 10.1016/j.ffa.2013.03.006. |
[6] |
C. Ding, Cyclic codes from dickson polynomials, preprint, arXiv:1206.4370 |
[7] |
C. Ding, Cyclic codes from the two-prime sequences, IEEE Trans. Inform. Theory, 58 (2012), 3881-3891.doi: 10.1109/TIT.2012.2189549. |
[8] |
C. Ding, Cyclotomic constructions of cyclic codes with length being the product of two primes, IEEE Trans. Inform. Theory, 58 (2012), 2231-2236.doi: 10.1109/TIT.2011.2176915. |
[9] |
C. Ding and S. Ling, A $q$-polynomial approach to cyclic codes, Finite Fields Appl., 20 (2013), 1-14.doi: 10.1016/j.ffa.2012.12.005. |
[10] |
C. Ding, Y. Liu and L. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inform. Theory, 57 (2011), 8000-8006.doi: 10.1109/TIT.2011.2165314. |
[11] |
C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, IEEE Trans. Inform. Theory, 313 (2013), 434-446.doi: 10.1016/j.disc.2012.11.009. |
[12] |
M. van Eupen and J. H. van Lint, On the minimum distance of ternary cyclic codes, IEEE Trans. Inform. Theory, 39 (1993), 409-422.doi: 10.1109/18.212272. |
[13] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univ. Press, Cambridge, 2003.doi: 10.1017/CBO9780511807077. |
[14] |
J. H. van Lint and R. M. Wilson, On the minimum distance of cyclic codes, IEEE Trans. Inform. Theory, 32 (1986), 23-40.doi: 10.1109/TIT.1986.1057134. |
[15] |
C. Ma, L. Zeng and Y. Liu et al., The weight enumerator of a class of cyclic codes, IEEE Trans. Inform. Theory, 57 (2011), 397-402.doi: 10.1109/TIT.2010.2090272. |
[16] |
Y. Sun, T. Yan and H. Li, Cyclic code from the first class Whiteman's generalized cyclotomic sequence with order 4, preprint, arXiv:1303.6378 |
[17] |
A. L. Whiteman, A family of difference sets, Illinois J. Math., 6 (1962) 107-121. |
[18] |
T. Yan, X. Du, G. Xiao and X. Huang, Linear complexity of binary Whiteman generalized cyclotomic sequences of order $2k$, Inform. Sci., 179 (2009), 1019-1023.doi: 10.1016/j.ins.2008.11.006. |
[19] |
T. Yan, B. Huang and G. Xiao, Cryptographic properties of some binary generalized cyclotomic sequences with the length $p^2$, Inform. Sci., 178 (2008), 1078-1086.doi: 10.1016/j.ins.2007.02.040. |
[20] |
J. Yang, M. Xiong and C. Ding, Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inform. Theory, 9 (2013), 5985-5993.doi: 10.1109/TIT.2013.2266731. |
[21] |
Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.doi: 10.1016/j.ffa.2013.08.005. |
[22] |
Z. Zhou, C. Ding, J. Luo and A. Zhang, A family of five-weight cyclic codes and their weight enumerators, IEEE Trans. Inform. Theory, 10 (2013), 6674-6682.doi: 10.1109/TIT.2013.2267722. |
[23] |
Z. Zhou, A. Zhang and C. Ding, The weight enumerator of three families of cyclic codes, IEEE Trans. Inform. Theory, 9 (2013), 6002-6009.doi: 10.1109/TIT.2013.2262095. |