\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Cyclic codes from two-prime generalized cyclotomic sequences of order 6

Abstract / Introduction Related Papers Cited by
  • Cyclic codes have wide applications in data storage systems and communication systems. Employing binary two-prime Whiteman generalized cyclotomic sequences of order 6, we construct several classes of cyclic codes over the finite field $\mathrm{GF}(q)$ and give their generator polynomials. And we also calculate the minimum distance of some cyclic codes and give lower bounds on the minimum distance for some other cyclic codes.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Betti and M. Sala, A new bound for the minimum distance of a cyclic code from its defining set, IEEE Trans. Inform. Theory, 52 (2006), 3700-3706.doi: 10.1109/TIT.2006.876240.

    [2]

    Z. Chen and X. Du, Linear complexity and autocorrelation values of a polyphase generalized cyclotomic sequence of length $pq$, Front. Computer Sci. China, 4 (2010), 529-535.

    [3]

    T. Cusick, C. Ding and A. Renvall, Stream ciphers and number theory, North-Holland Math. Library, 55 (2004), 198-212.

    [4]

    C. Ding, Cyclic codes from APN and planar functions, preprint, arXiv:1206.4687

    [5]

    C. Ding, Cyclic codes from cyclotomic sequences of order four, Finite Fields Appl., 23 (2012), 8-34.doi: 10.1016/j.ffa.2013.03.006.

    [6]

    C. Ding, Cyclic codes from dickson polynomials, preprint, arXiv:1206.4370

    [7]

    C. Ding, Cyclic codes from the two-prime sequences, IEEE Trans. Inform. Theory, 58 (2012), 3881-3891.doi: 10.1109/TIT.2012.2189549.

    [8]

    C. Ding, Cyclotomic constructions of cyclic codes with length being the product of two primes, IEEE Trans. Inform. Theory, 58 (2012), 2231-2236.doi: 10.1109/TIT.2011.2176915.

    [9]

    C. Ding and S. Ling, A $q$-polynomial approach to cyclic codes, Finite Fields Appl., 20 (2013), 1-14.doi: 10.1016/j.ffa.2012.12.005.

    [10]

    C. Ding, Y. Liu and L. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inform. Theory, 57 (2011), 8000-8006.doi: 10.1109/TIT.2011.2165314.

    [11]

    C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, IEEE Trans. Inform. Theory, 313 (2013), 434-446.doi: 10.1016/j.disc.2012.11.009.

    [12]

    M. van Eupen and J. H. van Lint, On the minimum distance of ternary cyclic codes, IEEE Trans. Inform. Theory, 39 (1993), 409-422.doi: 10.1109/18.212272.

    [13]

    W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univ. Press, Cambridge, 2003.doi: 10.1017/CBO9780511807077.

    [14]

    J. H. van Lint and R. M. Wilson, On the minimum distance of cyclic codes, IEEE Trans. Inform. Theory, 32 (1986), 23-40.doi: 10.1109/TIT.1986.1057134.

    [15]

    C. Ma, L. Zeng and Y. Liu et al., The weight enumerator of a class of cyclic codes, IEEE Trans. Inform. Theory, 57 (2011), 397-402.doi: 10.1109/TIT.2010.2090272.

    [16]

    Y. Sun, T. Yan and H. LiCyclic code from the first class Whiteman's generalized cyclotomic sequence with order 4, preprint, arXiv:1303.6378

    [17]

    A. L. Whiteman, A family of difference sets, Illinois J. Math., 6 (1962) 107-121.

    [18]

    T. Yan, X. Du, G. Xiao and X. Huang, Linear complexity of binary Whiteman generalized cyclotomic sequences of order $2k$, Inform. Sci., 179 (2009), 1019-1023.doi: 10.1016/j.ins.2008.11.006.

    [19]

    T. Yan, B. Huang and G. Xiao, Cryptographic properties of some binary generalized cyclotomic sequences with the length $p^2$, Inform. Sci., 178 (2008), 1078-1086.doi: 10.1016/j.ins.2007.02.040.

    [20]

    J. Yang, M. Xiong and C. Ding, Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inform. Theory, 9 (2013), 5985-5993.doi: 10.1109/TIT.2013.2266731.

    [21]

    Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.doi: 10.1016/j.ffa.2013.08.005.

    [22]

    Z. Zhou, C. Ding, J. Luo and A. Zhang, A family of five-weight cyclic codes and their weight enumerators, IEEE Trans. Inform. Theory, 10 (2013), 6674-6682.doi: 10.1109/TIT.2013.2267722.

    [23]

    Z. Zhou, A. Zhang and C. Ding, The weight enumerator of three families of cyclic codes, IEEE Trans. Inform. Theory, 9 (2013), 6002-6009.doi: 10.1109/TIT.2013.2262095.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(163) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return