November  2016, 10(4): 753-764. doi: 10.3934/amc.2016039

A note on diagonal and Hermitian hypersurfaces

1. 

Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

2. 

Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, Canada M5S 2E4

3. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada

Received  October 2014 Revised  August 2015 Published  November 2016

Aspects of the properties, enumeration and construction of points on diagonal and Hermitian hypersurfaces have been considered extensively in the literature and are further considered here. The zeta function of diagonal hypersurfaces is given as a direct result of the work of Wolfmann. Recursive construction techniques for the set of rational points of Hermitian hypersurfaces are of interest. The relationship of these techniques here to the construction of codes on hypersurfaces is briefly noted.
Citation: Ian Blake, V. Kumar Murty, Hamid Usefi. A note on diagonal and Hermitian hypersurfaces. Advances in Mathematics of Communications, 2016, 10 (4) : 753-764. doi: 10.3934/amc.2016039
References:
[1]

Y. Aubry, Reed-Muller codes associated to projective algebraic varieties,, in Coding Theory and Algebraic Geometry, (1992), 4. doi: 10.1007/BFb0087988. Google Scholar

[2]

D. Bartoli, M. De Boeck, S. Fanali and L. Storme, On the functional codes defined by quadrics and Hermitian varieties,, Des. Codes Crypt., 71 (2014), 21. doi: 10.1007/s10623-012-9712-4. Google Scholar

[3]

R. C. Bose, On the application of finite projective geometry for deriving a certain series of balanced Kirkman arrangements,, Calcutta Math. Soc., (1959), 341. Google Scholar

[4]

R. C. Bose and I. M. Chakravarti, Hermitian varieties in a finite projective space $PG(N,q)$,, Canad. J. Math., 18 (1966), 1161. Google Scholar

[5]

R. Calderbank and W. Kantor, The geometry of two weight codes,, Bull. London Math. Soc., 18 (1986), 97. doi: 10.1112/blms/18.2.97. Google Scholar

[6]

J. P. Cherdieu and R. Rolland, On the number of points of some hypersurfaces in $\F_q^n$,, Finite Fields Appl., 2 (1996), 214. doi: 10.1006/ffta.1996.0014. Google Scholar

[7]

F. Edoukou, Codes defined by forms of degree 2 on Hermitian surfaces and Sørensen's conjecture,, Finite Fields Appl., 13 (2008), 616. doi: 10.1016/j.ffa.2006.07.001. Google Scholar

[8]

F. Edoukou, A. Hallex, F. Rodier and L. Storme, The small weight codewords of the functional codes associated to non-singular Hermitian varieties,, Des. Codes Crypt., 56 (2010), 219. doi: 10.1007/s10623-010-9401-0. Google Scholar

[9]

F. Edoukou, S. Ling and C. Xing, Intersection of two quadrics with no common hyperplane in $\mathbbP^n (\mathbbF_q )$,, preprint, (). Google Scholar

[10]

F. Edoukou, S. Ling and C. Xing, Structure of functional codes defined on non-degenerate Hermitian varieties,, J. Combin. Theory Ser. A, 118 (2011), 2436. doi: 10.1016/j.jcta.2011.05.006. Google Scholar

[11]

S. R. Ghorpade and G. Lachaud, Number of solutions of equations over finite fields and a conjecture of Lang and Weil,, in Number Theory and Discrete Mathematics, (2002), 269. Google Scholar

[12]

A. Hallez and L. Storme, Functional codes arising from quadric intersections with Hermitian varieties,, Finite Fields Appl., 16 (2010), 27. doi: 10.1016/j.ffa.2009.11.005. Google Scholar

[13]

S. H. Hansen, Error-correcting codes from higher dimensional varieties,, Finite Fields Appl., 7 (2001), 530. doi: 10.1006/ffta.2001.0313. Google Scholar

[14]

K. Ireland and M. Rosen, A Cclassical Introduction to Modern Number Theory,, Springer-Verlag, (1990). doi: 10.1007/978-1-4757-2103-4. Google Scholar

[15]

N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta Functions,, Springer-Verlag, (1977). Google Scholar

[16]

G. Lachaud, The parameters of projective Reed-Müller codes,, Discrete Math., 81 (1990), 217. doi: 10.1016/0012-365X(90)90155-B. Google Scholar

[17]

G. Lachaud, Number of points of plane sections and linear codes defined on algebraic varieties,, in Arithmetic, (1993). Google Scholar

[18]

J. B. Little, Algebraic geometry codes from higher dimensional varieties,, in Advances in Algebraic Geometry Codes, (2008), 257. doi: 10.1142/9789812794017_0007. Google Scholar

[19]

A. Sboui, Second highest number of points of hypersurfaces in $\F_q^n$,, Finite fields and their applications, 13 (2007), 444. doi: 10.1016/j.ffa.2005.11.002. Google Scholar

[20]

A. B. Sørensen, Projective Reed-Müller codes,, IEEE Trans. Inform. Theory, 17 (1991), 1567. doi: 10.1109/18.104317. Google Scholar

[21]

A. B. Sørensen, Rational Points on Hypersurfaces, Reed-Muller Codes and Algebraic Geometric Codes,, Ph.D. thesis, (1991). Google Scholar

[22]

A. B. Sørensen, On the number of rational points on codimension-1 algebraic sets in $P^n (F_q)$,, Discrete Math., 135 (1994), 321. doi: 10.1016/0012-365X(93)E0009-S. Google Scholar

[23]

H. Stichtenoth, Algebraic Function Fields and Codes,, Springer-Verlag, (1991). Google Scholar

[24]

M. Tsfasman, S. Vladut and D. Nogin, Algebraic Geometric Codes: Basic Notions,, AMS, (2007). doi: 10.1090/surv/139. Google Scholar

[25]

A. Weil, Numbers of solutions of equations in finite fields,, Bull. Amer. Math. Soc., 55 (1949), 497. Google Scholar

[26]

J. Wolfmann, The number of solutions of certain diagonal equations over finite fields,, J. Number Theory, 42 (1992), 247. doi: 10.1016/0022-314X(92)90091-3. Google Scholar

[27]

K. Yang and V. Kumar, On the true minimum distance of Hermitian codes,, Coding Theory and Algebraic Geometry, (1992), 99. doi: 10.1007/BFb0087995. Google Scholar

[28]

M. Zarzar, Error-correcting codes on low rank surfaces,, Finite Fields Appl., 13 (2007), 727. doi: 10.1016/j.ffa.2007.05.001. Google Scholar

show all references

References:
[1]

Y. Aubry, Reed-Muller codes associated to projective algebraic varieties,, in Coding Theory and Algebraic Geometry, (1992), 4. doi: 10.1007/BFb0087988. Google Scholar

[2]

D. Bartoli, M. De Boeck, S. Fanali and L. Storme, On the functional codes defined by quadrics and Hermitian varieties,, Des. Codes Crypt., 71 (2014), 21. doi: 10.1007/s10623-012-9712-4. Google Scholar

[3]

R. C. Bose, On the application of finite projective geometry for deriving a certain series of balanced Kirkman arrangements,, Calcutta Math. Soc., (1959), 341. Google Scholar

[4]

R. C. Bose and I. M. Chakravarti, Hermitian varieties in a finite projective space $PG(N,q)$,, Canad. J. Math., 18 (1966), 1161. Google Scholar

[5]

R. Calderbank and W. Kantor, The geometry of two weight codes,, Bull. London Math. Soc., 18 (1986), 97. doi: 10.1112/blms/18.2.97. Google Scholar

[6]

J. P. Cherdieu and R. Rolland, On the number of points of some hypersurfaces in $\F_q^n$,, Finite Fields Appl., 2 (1996), 214. doi: 10.1006/ffta.1996.0014. Google Scholar

[7]

F. Edoukou, Codes defined by forms of degree 2 on Hermitian surfaces and Sørensen's conjecture,, Finite Fields Appl., 13 (2008), 616. doi: 10.1016/j.ffa.2006.07.001. Google Scholar

[8]

F. Edoukou, A. Hallex, F. Rodier and L. Storme, The small weight codewords of the functional codes associated to non-singular Hermitian varieties,, Des. Codes Crypt., 56 (2010), 219. doi: 10.1007/s10623-010-9401-0. Google Scholar

[9]

F. Edoukou, S. Ling and C. Xing, Intersection of two quadrics with no common hyperplane in $\mathbbP^n (\mathbbF_q )$,, preprint, (). Google Scholar

[10]

F. Edoukou, S. Ling and C. Xing, Structure of functional codes defined on non-degenerate Hermitian varieties,, J. Combin. Theory Ser. A, 118 (2011), 2436. doi: 10.1016/j.jcta.2011.05.006. Google Scholar

[11]

S. R. Ghorpade and G. Lachaud, Number of solutions of equations over finite fields and a conjecture of Lang and Weil,, in Number Theory and Discrete Mathematics, (2002), 269. Google Scholar

[12]

A. Hallez and L. Storme, Functional codes arising from quadric intersections with Hermitian varieties,, Finite Fields Appl., 16 (2010), 27. doi: 10.1016/j.ffa.2009.11.005. Google Scholar

[13]

S. H. Hansen, Error-correcting codes from higher dimensional varieties,, Finite Fields Appl., 7 (2001), 530. doi: 10.1006/ffta.2001.0313. Google Scholar

[14]

K. Ireland and M. Rosen, A Cclassical Introduction to Modern Number Theory,, Springer-Verlag, (1990). doi: 10.1007/978-1-4757-2103-4. Google Scholar

[15]

N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta Functions,, Springer-Verlag, (1977). Google Scholar

[16]

G. Lachaud, The parameters of projective Reed-Müller codes,, Discrete Math., 81 (1990), 217. doi: 10.1016/0012-365X(90)90155-B. Google Scholar

[17]

G. Lachaud, Number of points of plane sections and linear codes defined on algebraic varieties,, in Arithmetic, (1993). Google Scholar

[18]

J. B. Little, Algebraic geometry codes from higher dimensional varieties,, in Advances in Algebraic Geometry Codes, (2008), 257. doi: 10.1142/9789812794017_0007. Google Scholar

[19]

A. Sboui, Second highest number of points of hypersurfaces in $\F_q^n$,, Finite fields and their applications, 13 (2007), 444. doi: 10.1016/j.ffa.2005.11.002. Google Scholar

[20]

A. B. Sørensen, Projective Reed-Müller codes,, IEEE Trans. Inform. Theory, 17 (1991), 1567. doi: 10.1109/18.104317. Google Scholar

[21]

A. B. Sørensen, Rational Points on Hypersurfaces, Reed-Muller Codes and Algebraic Geometric Codes,, Ph.D. thesis, (1991). Google Scholar

[22]

A. B. Sørensen, On the number of rational points on codimension-1 algebraic sets in $P^n (F_q)$,, Discrete Math., 135 (1994), 321. doi: 10.1016/0012-365X(93)E0009-S. Google Scholar

[23]

H. Stichtenoth, Algebraic Function Fields and Codes,, Springer-Verlag, (1991). Google Scholar

[24]

M. Tsfasman, S. Vladut and D. Nogin, Algebraic Geometric Codes: Basic Notions,, AMS, (2007). doi: 10.1090/surv/139. Google Scholar

[25]

A. Weil, Numbers of solutions of equations in finite fields,, Bull. Amer. Math. Soc., 55 (1949), 497. Google Scholar

[26]

J. Wolfmann, The number of solutions of certain diagonal equations over finite fields,, J. Number Theory, 42 (1992), 247. doi: 10.1016/0022-314X(92)90091-3. Google Scholar

[27]

K. Yang and V. Kumar, On the true minimum distance of Hermitian codes,, Coding Theory and Algebraic Geometry, (1992), 99. doi: 10.1007/BFb0087995. Google Scholar

[28]

M. Zarzar, Error-correcting codes on low rank surfaces,, Finite Fields Appl., 13 (2007), 727. doi: 10.1016/j.ffa.2007.05.001. Google Scholar

[1]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[2]

Alexander Gorodnik, Frédéric Paulin. Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows. Journal of Modern Dynamics, 2014, 8 (1) : 25-59. doi: 10.3934/jmd.2014.8.25

[3]

M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281

[4]

Carla Mascia, Giancarlo Rinaldo, Massimiliano Sala. Hilbert quasi-polynomial for order domains and application to coding theory. Advances in Mathematics of Communications, 2018, 12 (2) : 287-301. doi: 10.3934/amc.2018018

[5]

Roland Martin. On simple Igusa local zeta functions. Electronic Research Announcements, 1995, 1: 108-111.

[6]

V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511

[7]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[8]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[9]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[10]

Simon Scott. Relative zeta determinants and the geometry of the determinant line bundle. Electronic Research Announcements, 2001, 7: 8-16.

[11]

D. Warren, K Najarian. Learning theory applied to Sigmoid network classification of protein biological function using primary protein structure. Conference Publications, 2003, 2003 (Special) : 898-904. doi: 10.3934/proc.2003.2003.898

[12]

Anton Izosimov. Pentagrams, inscribed polygons, and Prym varieties. Electronic Research Announcements, 2016, 23: 25-40. doi: 10.3934/era.2016.23.004

[13]

G. Mashevitzky, B. Plotkin and E. Plotkin. Automorphisms of categories of free algebras of varieties. Electronic Research Announcements, 2002, 8: 1-10.

[14]

A. Giambruno and M. Zaicev. Minimal varieties of algebras of exponential growth. Electronic Research Announcements, 2000, 6: 40-44.

[15]

Laurenţiu Maxim, Jörg Schürmann. Characteristic classes of singular toric varieties. Electronic Research Announcements, 2013, 20: 109-120. doi: 10.3934/era.2013.20.109

[16]

Aravind Asok, James Parson. Equivariant sheaves on some spherical varieties. Electronic Research Announcements, 2011, 18: 119-130. doi: 10.3934/era.2011.18.119

[17]

Grzegorz Siudem, Grzegorz Świątek. Diagonal stationary points of the bethe functional. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2717-2743. doi: 10.3934/dcds.2017117

[18]

Jesús Carrillo-Pacheco, Felipe Zaldivar. On codes over FFN$(1,q)$-projective varieties. Advances in Mathematics of Communications, 2016, 10 (2) : 209-220. doi: 10.3934/amc.2016001

[19]

Sylvain E. Cappell, Anatoly Libgober, Laurentiu Maxim and Julius L. Shaneson. Hodge genera and characteristic classes of complex algebraic varieties. Electronic Research Announcements, 2008, 15: 1-7. doi: 10.3934/era.2008.15.1

[20]

João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]