November  2016, 10(4): 753-764. doi: 10.3934/amc.2016039

A note on diagonal and Hermitian hypersurfaces

1. 

Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

2. 

Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, Canada M5S 2E4

3. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada

Received  October 2014 Revised  August 2015 Published  November 2016

Aspects of the properties, enumeration and construction of points on diagonal and Hermitian hypersurfaces have been considered extensively in the literature and are further considered here. The zeta function of diagonal hypersurfaces is given as a direct result of the work of Wolfmann. Recursive construction techniques for the set of rational points of Hermitian hypersurfaces are of interest. The relationship of these techniques here to the construction of codes on hypersurfaces is briefly noted.
Citation: Ian Blake, V. Kumar Murty, Hamid Usefi. A note on diagonal and Hermitian hypersurfaces. Advances in Mathematics of Communications, 2016, 10 (4) : 753-764. doi: 10.3934/amc.2016039
References:
[1]

Y. Aubry, Reed-Muller codes associated to projective algebraic varieties,, in Coding Theory and Algebraic Geometry, (1992), 4. doi: 10.1007/BFb0087988.

[2]

D. Bartoli, M. De Boeck, S. Fanali and L. Storme, On the functional codes defined by quadrics and Hermitian varieties,, Des. Codes Crypt., 71 (2014), 21. doi: 10.1007/s10623-012-9712-4.

[3]

R. C. Bose, On the application of finite projective geometry for deriving a certain series of balanced Kirkman arrangements,, Calcutta Math. Soc., (1959), 341.

[4]

R. C. Bose and I. M. Chakravarti, Hermitian varieties in a finite projective space $PG(N,q)$,, Canad. J. Math., 18 (1966), 1161.

[5]

R. Calderbank and W. Kantor, The geometry of two weight codes,, Bull. London Math. Soc., 18 (1986), 97. doi: 10.1112/blms/18.2.97.

[6]

J. P. Cherdieu and R. Rolland, On the number of points of some hypersurfaces in $\F_q^n$,, Finite Fields Appl., 2 (1996), 214. doi: 10.1006/ffta.1996.0014.

[7]

F. Edoukou, Codes defined by forms of degree 2 on Hermitian surfaces and Sørensen's conjecture,, Finite Fields Appl., 13 (2008), 616. doi: 10.1016/j.ffa.2006.07.001.

[8]

F. Edoukou, A. Hallex, F. Rodier and L. Storme, The small weight codewords of the functional codes associated to non-singular Hermitian varieties,, Des. Codes Crypt., 56 (2010), 219. doi: 10.1007/s10623-010-9401-0.

[9]

F. Edoukou, S. Ling and C. Xing, Intersection of two quadrics with no common hyperplane in $\mathbbP^n (\mathbbF_q )$,, preprint, ().

[10]

F. Edoukou, S. Ling and C. Xing, Structure of functional codes defined on non-degenerate Hermitian varieties,, J. Combin. Theory Ser. A, 118 (2011), 2436. doi: 10.1016/j.jcta.2011.05.006.

[11]

S. R. Ghorpade and G. Lachaud, Number of solutions of equations over finite fields and a conjecture of Lang and Weil,, in Number Theory and Discrete Mathematics, (2002), 269.

[12]

A. Hallez and L. Storme, Functional codes arising from quadric intersections with Hermitian varieties,, Finite Fields Appl., 16 (2010), 27. doi: 10.1016/j.ffa.2009.11.005.

[13]

S. H. Hansen, Error-correcting codes from higher dimensional varieties,, Finite Fields Appl., 7 (2001), 530. doi: 10.1006/ffta.2001.0313.

[14]

K. Ireland and M. Rosen, A Cclassical Introduction to Modern Number Theory,, Springer-Verlag, (1990). doi: 10.1007/978-1-4757-2103-4.

[15]

N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta Functions,, Springer-Verlag, (1977).

[16]

G. Lachaud, The parameters of projective Reed-Müller codes,, Discrete Math., 81 (1990), 217. doi: 10.1016/0012-365X(90)90155-B.

[17]

G. Lachaud, Number of points of plane sections and linear codes defined on algebraic varieties,, in Arithmetic, (1993).

[18]

J. B. Little, Algebraic geometry codes from higher dimensional varieties,, in Advances in Algebraic Geometry Codes, (2008), 257. doi: 10.1142/9789812794017_0007.

[19]

A. Sboui, Second highest number of points of hypersurfaces in $\F_q^n$,, Finite fields and their applications, 13 (2007), 444. doi: 10.1016/j.ffa.2005.11.002.

[20]

A. B. Sørensen, Projective Reed-Müller codes,, IEEE Trans. Inform. Theory, 17 (1991), 1567. doi: 10.1109/18.104317.

[21]

A. B. Sørensen, Rational Points on Hypersurfaces, Reed-Muller Codes and Algebraic Geometric Codes,, Ph.D. thesis, (1991).

[22]

A. B. Sørensen, On the number of rational points on codimension-1 algebraic sets in $P^n (F_q)$,, Discrete Math., 135 (1994), 321. doi: 10.1016/0012-365X(93)E0009-S.

[23]

H. Stichtenoth, Algebraic Function Fields and Codes,, Springer-Verlag, (1991).

[24]

M. Tsfasman, S. Vladut and D. Nogin, Algebraic Geometric Codes: Basic Notions,, AMS, (2007). doi: 10.1090/surv/139.

[25]

A. Weil, Numbers of solutions of equations in finite fields,, Bull. Amer. Math. Soc., 55 (1949), 497.

[26]

J. Wolfmann, The number of solutions of certain diagonal equations over finite fields,, J. Number Theory, 42 (1992), 247. doi: 10.1016/0022-314X(92)90091-3.

[27]

K. Yang and V. Kumar, On the true minimum distance of Hermitian codes,, Coding Theory and Algebraic Geometry, (1992), 99. doi: 10.1007/BFb0087995.

[28]

M. Zarzar, Error-correcting codes on low rank surfaces,, Finite Fields Appl., 13 (2007), 727. doi: 10.1016/j.ffa.2007.05.001.

show all references

References:
[1]

Y. Aubry, Reed-Muller codes associated to projective algebraic varieties,, in Coding Theory and Algebraic Geometry, (1992), 4. doi: 10.1007/BFb0087988.

[2]

D. Bartoli, M. De Boeck, S. Fanali and L. Storme, On the functional codes defined by quadrics and Hermitian varieties,, Des. Codes Crypt., 71 (2014), 21. doi: 10.1007/s10623-012-9712-4.

[3]

R. C. Bose, On the application of finite projective geometry for deriving a certain series of balanced Kirkman arrangements,, Calcutta Math. Soc., (1959), 341.

[4]

R. C. Bose and I. M. Chakravarti, Hermitian varieties in a finite projective space $PG(N,q)$,, Canad. J. Math., 18 (1966), 1161.

[5]

R. Calderbank and W. Kantor, The geometry of two weight codes,, Bull. London Math. Soc., 18 (1986), 97. doi: 10.1112/blms/18.2.97.

[6]

J. P. Cherdieu and R. Rolland, On the number of points of some hypersurfaces in $\F_q^n$,, Finite Fields Appl., 2 (1996), 214. doi: 10.1006/ffta.1996.0014.

[7]

F. Edoukou, Codes defined by forms of degree 2 on Hermitian surfaces and Sørensen's conjecture,, Finite Fields Appl., 13 (2008), 616. doi: 10.1016/j.ffa.2006.07.001.

[8]

F. Edoukou, A. Hallex, F. Rodier and L. Storme, The small weight codewords of the functional codes associated to non-singular Hermitian varieties,, Des. Codes Crypt., 56 (2010), 219. doi: 10.1007/s10623-010-9401-0.

[9]

F. Edoukou, S. Ling and C. Xing, Intersection of two quadrics with no common hyperplane in $\mathbbP^n (\mathbbF_q )$,, preprint, ().

[10]

F. Edoukou, S. Ling and C. Xing, Structure of functional codes defined on non-degenerate Hermitian varieties,, J. Combin. Theory Ser. A, 118 (2011), 2436. doi: 10.1016/j.jcta.2011.05.006.

[11]

S. R. Ghorpade and G. Lachaud, Number of solutions of equations over finite fields and a conjecture of Lang and Weil,, in Number Theory and Discrete Mathematics, (2002), 269.

[12]

A. Hallez and L. Storme, Functional codes arising from quadric intersections with Hermitian varieties,, Finite Fields Appl., 16 (2010), 27. doi: 10.1016/j.ffa.2009.11.005.

[13]

S. H. Hansen, Error-correcting codes from higher dimensional varieties,, Finite Fields Appl., 7 (2001), 530. doi: 10.1006/ffta.2001.0313.

[14]

K. Ireland and M. Rosen, A Cclassical Introduction to Modern Number Theory,, Springer-Verlag, (1990). doi: 10.1007/978-1-4757-2103-4.

[15]

N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta Functions,, Springer-Verlag, (1977).

[16]

G. Lachaud, The parameters of projective Reed-Müller codes,, Discrete Math., 81 (1990), 217. doi: 10.1016/0012-365X(90)90155-B.

[17]

G. Lachaud, Number of points of plane sections and linear codes defined on algebraic varieties,, in Arithmetic, (1993).

[18]

J. B. Little, Algebraic geometry codes from higher dimensional varieties,, in Advances in Algebraic Geometry Codes, (2008), 257. doi: 10.1142/9789812794017_0007.

[19]

A. Sboui, Second highest number of points of hypersurfaces in $\F_q^n$,, Finite fields and their applications, 13 (2007), 444. doi: 10.1016/j.ffa.2005.11.002.

[20]

A. B. Sørensen, Projective Reed-Müller codes,, IEEE Trans. Inform. Theory, 17 (1991), 1567. doi: 10.1109/18.104317.

[21]

A. B. Sørensen, Rational Points on Hypersurfaces, Reed-Muller Codes and Algebraic Geometric Codes,, Ph.D. thesis, (1991).

[22]

A. B. Sørensen, On the number of rational points on codimension-1 algebraic sets in $P^n (F_q)$,, Discrete Math., 135 (1994), 321. doi: 10.1016/0012-365X(93)E0009-S.

[23]

H. Stichtenoth, Algebraic Function Fields and Codes,, Springer-Verlag, (1991).

[24]

M. Tsfasman, S. Vladut and D. Nogin, Algebraic Geometric Codes: Basic Notions,, AMS, (2007). doi: 10.1090/surv/139.

[25]

A. Weil, Numbers of solutions of equations in finite fields,, Bull. Amer. Math. Soc., 55 (1949), 497.

[26]

J. Wolfmann, The number of solutions of certain diagonal equations over finite fields,, J. Number Theory, 42 (1992), 247. doi: 10.1016/0022-314X(92)90091-3.

[27]

K. Yang and V. Kumar, On the true minimum distance of Hermitian codes,, Coding Theory and Algebraic Geometry, (1992), 99. doi: 10.1007/BFb0087995.

[28]

M. Zarzar, Error-correcting codes on low rank surfaces,, Finite Fields Appl., 13 (2007), 727. doi: 10.1016/j.ffa.2007.05.001.

[1]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[2]

Alexander Gorodnik, Frédéric Paulin. Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows. Journal of Modern Dynamics, 2014, 8 (1) : 25-59. doi: 10.3934/jmd.2014.8.25

[3]

M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281

[4]

Carla Mascia, Giancarlo Rinaldo, Massimiliano Sala. Hilbert quasi-polynomial for order domains and application to coding theory. Advances in Mathematics of Communications, 2018, 12 (2) : 287-301. doi: 10.3934/amc.2018018

[5]

Roland Martin. On simple Igusa local zeta functions. Electronic Research Announcements, 1995, 1: 108-111.

[6]

V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511

[7]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[8]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[9]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[10]

Simon Scott. Relative zeta determinants and the geometry of the determinant line bundle. Electronic Research Announcements, 2001, 7: 8-16.

[11]

D. Warren, K Najarian. Learning theory applied to Sigmoid network classification of protein biological function using primary protein structure. Conference Publications, 2003, 2003 (Special) : 898-904. doi: 10.3934/proc.2003.2003.898

[12]

Anton Izosimov. Pentagrams, inscribed polygons, and Prym varieties. Electronic Research Announcements, 2016, 23: 25-40. doi: 10.3934/era.2016.23.004

[13]

G. Mashevitzky, B. Plotkin and E. Plotkin. Automorphisms of categories of free algebras of varieties. Electronic Research Announcements, 2002, 8: 1-10.

[14]

A. Giambruno and M. Zaicev. Minimal varieties of algebras of exponential growth. Electronic Research Announcements, 2000, 6: 40-44.

[15]

Laurenţiu Maxim, Jörg Schürmann. Characteristic classes of singular toric varieties. Electronic Research Announcements, 2013, 20: 109-120. doi: 10.3934/era.2013.20.109

[16]

Aravind Asok, James Parson. Equivariant sheaves on some spherical varieties. Electronic Research Announcements, 2011, 18: 119-130. doi: 10.3934/era.2011.18.119

[17]

Grzegorz Siudem, Grzegorz Świątek. Diagonal stationary points of the bethe functional. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2717-2743. doi: 10.3934/dcds.2017117

[18]

Jesús Carrillo-Pacheco, Felipe Zaldivar. On codes over FFN$(1,q)$-projective varieties. Advances in Mathematics of Communications, 2016, 10 (2) : 209-220. doi: 10.3934/amc.2016001

[19]

Sylvain E. Cappell, Anatoly Libgober, Laurentiu Maxim and Julius L. Shaneson. Hodge genera and characteristic classes of complex algebraic varieties. Electronic Research Announcements, 2008, 15: 1-7. doi: 10.3934/era.2008.15.1

[20]

Jan Prüss, Gieri Simonett. On the manifold of closed hypersurfaces in $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5407-5428. doi: 10.3934/dcds.2013.33.5407

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]