November  2016, 10(4): 797-809. doi: 10.3934/amc.2016041

Modelling the shrinking generator in terms of linear CA

1. 

Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas (UNICAMP), R. Sérgio Buarque de Holanda, 651, Cidade Universitária, Campinas - SP, 13083-859

2. 

Instituto de Tecnologías Físicas y de la Información, Consejo Superior de Investigaciones Científicas, C/Serrano 144, 28006, Madrid, Spain

Received  December 2014 Revised  June 2016 Published  November 2016

This work analyses the output sequence from a cryptographic non-linear generator, the so-called shrinking generator. This sequence, known as the shrunken sequence, can be built by interleaving a unique PN-sequence whose characteristic polynomial serves as basis for the shrunken sequence's characteristic polynomial. In addition, the shrunken sequence can be also generated from a linear model based on cellular automata. The cellular automata here proposed generate a family of sequences with the same properties, period and characteristic polynomial, as those of the shrunken sequence. Moreover, such sequences appear several times along the cellular automata shifted a fixed number. The use of discrete logarithms allows the computation of such a number. The linearity of these cellular automata can be advantageously employed to launch a cryptanalysis against the shrinking generator and recover its output sequence.
Citation: Sara D. Cardell, Amparo Fúster-Sabater. Modelling the shrinking generator in terms of linear CA. Advances in Mathematics of Communications, 2016, 10 (4) : 797-809. doi: 10.3934/amc.2016041
References:
[1]

S. D. Cardell and A. Fúster-Sabater, Cryptanalysing the shrinking generator, Proc. Comp. Sci., 51 (2015), 2893-2897. Google Scholar

[2]

S. D. Cardell and A. Fúster-Sabater, Performance of the cryptanalysis over the shrinking generator, in Int. Joint Conf. CISIS'15 and ICEUTE'15 (eds. A.H. et al.), Springer, 2015, 111-121. Google Scholar

[3]

S. D. Cardell and A. Fúster-Sabater, Linear models for the self-shrinking generator based on CA, J. Cell. Autom., 11 (2016), 195-211.  Google Scholar

[4]

K. Cattell and J. C. Muzio, One-dimensional linear hybrid cellular automata, IEEE Trans. Comp.-Aided Des., 15 (1996), 325-335. doi: 10.1109/12.508317.  Google Scholar

[5]

D. Coppersmith, H. Krawczyk and Y. Mansour, The shrinking generator, in Adv. Crypt. - CRYPTO '93, Springer-Verlag, 1993, 23-39. doi: 10.1007/3-540-48329-2_3.  Google Scholar

[6]

A. K. Das, A. Ganguly, A. Dasgupta, S. Bhawmik and P. P. Chaudhuri, Efficient characterisation of cellular automata, IEEE Proc. Comp. Dig. Techn., 137 (1990), 81-87. Google Scholar

[7]

S. Das and D. RoyChowdhury, Car30: A new scalable stream cipher with rule 30, Crypt. Commun., 5 (2013), 137-162. doi: 10.1007/s12095-012-0079-1.  Google Scholar

[8]

P. F. Duvall and J. C. Mortick, Decimation of periodic sequences, SIAM J. Appl. Math., 21 (1971), 367-372.  Google Scholar

[9]

A. Fúster-Sabater and P. Caballero-Gil, Linear solutions for cryptographic nonlinear sequence generators, Phys. Lett. A, 369 (2007), 432-437. doi: 10.1063/1.2827050.  Google Scholar

[10]

A. Fúster-Sabater, M. E. Pazo-Robles and P. Caballero-Gil, A simple linearization of the self-shrinking generator by means of cellular automata, Neural Netw., 23 (2010), 461-464. Google Scholar

[11]

S. W. Golomb, Shift Register-Sequences, Aegean Park Press, Laguna Hill, California, 1982. Google Scholar

[12]

J. Jose, S. Das and D. RoyChowdhury, Inapplicability of fault attacks against trivium on a cellular automata based stream cipher, in 11th Int. Conf. Cell. Autom. Res. Ind. ACRI 2014, Springer-Verlag, 2014, 427-436. Google Scholar

[13]

A. Kanso, Modified self-shrinking generator, Comp. Electr. Engin., 36 (2010), 993-1001. Google Scholar

[14]

R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge Univ. Press, New York, NY, 1986.  Google Scholar

[15]

J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory, 15 (1969), 122-127.  Google Scholar

[16]

W. Meier and O. Staffelbach, Analysis of pseudo random sequences generated by cellular automata, in Adv. Crypt. - EUROCRYPTO '91, Springer-Verlag, Berlin, 1991, 186-199. doi: 10.1007/3-540-46416-6_17.  Google Scholar

[17]

W. Meier and O. Staffelbach, The self-shrinking generator, in Adv. Crypt. - EUROCRYPT 1994, Springer-Verlag, 1994, 205-214. doi: 10.1007/BFb0053436.  Google Scholar

[18]

A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, FL, 1996. Google Scholar

[19]

M. Mihaljević, Y. Zheng and H. Imai, A fast and secure stream cipher based on cellular automata over GF(q), in Proc. Global Telecomm. Conf. GLOBECOM 1998, 1998, 3250-3255. Google Scholar

[20]

C. Paar and J. Pelzl, Understanding Cryptography, Springer, Berlin, 2010. Google Scholar

[21]

S. Wolfram, Cellular automata as simple self-organizing system, Caltrech preprint, CALT-68-938, 1982.  Google Scholar

[22]

S. Wolfram, Cryptography with cellular automata, in Adv. Crypt. - EUROCRYPT 1985, Springer-Verlag, 1985, 429-432. Google Scholar

show all references

References:
[1]

S. D. Cardell and A. Fúster-Sabater, Cryptanalysing the shrinking generator, Proc. Comp. Sci., 51 (2015), 2893-2897. Google Scholar

[2]

S. D. Cardell and A. Fúster-Sabater, Performance of the cryptanalysis over the shrinking generator, in Int. Joint Conf. CISIS'15 and ICEUTE'15 (eds. A.H. et al.), Springer, 2015, 111-121. Google Scholar

[3]

S. D. Cardell and A. Fúster-Sabater, Linear models for the self-shrinking generator based on CA, J. Cell. Autom., 11 (2016), 195-211.  Google Scholar

[4]

K. Cattell and J. C. Muzio, One-dimensional linear hybrid cellular automata, IEEE Trans. Comp.-Aided Des., 15 (1996), 325-335. doi: 10.1109/12.508317.  Google Scholar

[5]

D. Coppersmith, H. Krawczyk and Y. Mansour, The shrinking generator, in Adv. Crypt. - CRYPTO '93, Springer-Verlag, 1993, 23-39. doi: 10.1007/3-540-48329-2_3.  Google Scholar

[6]

A. K. Das, A. Ganguly, A. Dasgupta, S. Bhawmik and P. P. Chaudhuri, Efficient characterisation of cellular automata, IEEE Proc. Comp. Dig. Techn., 137 (1990), 81-87. Google Scholar

[7]

S. Das and D. RoyChowdhury, Car30: A new scalable stream cipher with rule 30, Crypt. Commun., 5 (2013), 137-162. doi: 10.1007/s12095-012-0079-1.  Google Scholar

[8]

P. F. Duvall and J. C. Mortick, Decimation of periodic sequences, SIAM J. Appl. Math., 21 (1971), 367-372.  Google Scholar

[9]

A. Fúster-Sabater and P. Caballero-Gil, Linear solutions for cryptographic nonlinear sequence generators, Phys. Lett. A, 369 (2007), 432-437. doi: 10.1063/1.2827050.  Google Scholar

[10]

A. Fúster-Sabater, M. E. Pazo-Robles and P. Caballero-Gil, A simple linearization of the self-shrinking generator by means of cellular automata, Neural Netw., 23 (2010), 461-464. Google Scholar

[11]

S. W. Golomb, Shift Register-Sequences, Aegean Park Press, Laguna Hill, California, 1982. Google Scholar

[12]

J. Jose, S. Das and D. RoyChowdhury, Inapplicability of fault attacks against trivium on a cellular automata based stream cipher, in 11th Int. Conf. Cell. Autom. Res. Ind. ACRI 2014, Springer-Verlag, 2014, 427-436. Google Scholar

[13]

A. Kanso, Modified self-shrinking generator, Comp. Electr. Engin., 36 (2010), 993-1001. Google Scholar

[14]

R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge Univ. Press, New York, NY, 1986.  Google Scholar

[15]

J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory, 15 (1969), 122-127.  Google Scholar

[16]

W. Meier and O. Staffelbach, Analysis of pseudo random sequences generated by cellular automata, in Adv. Crypt. - EUROCRYPTO '91, Springer-Verlag, Berlin, 1991, 186-199. doi: 10.1007/3-540-46416-6_17.  Google Scholar

[17]

W. Meier and O. Staffelbach, The self-shrinking generator, in Adv. Crypt. - EUROCRYPT 1994, Springer-Verlag, 1994, 205-214. doi: 10.1007/BFb0053436.  Google Scholar

[18]

A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, FL, 1996. Google Scholar

[19]

M. Mihaljević, Y. Zheng and H. Imai, A fast and secure stream cipher based on cellular automata over GF(q), in Proc. Global Telecomm. Conf. GLOBECOM 1998, 1998, 3250-3255. Google Scholar

[20]

C. Paar and J. Pelzl, Understanding Cryptography, Springer, Berlin, 2010. Google Scholar

[21]

S. Wolfram, Cellular automata as simple self-organizing system, Caltrech preprint, CALT-68-938, 1982.  Google Scholar

[22]

S. Wolfram, Cryptography with cellular automata, in Adv. Crypt. - EUROCRYPT 1985, Springer-Verlag, 1985, 429-432. Google Scholar

[1]

T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete & Continuous Dynamical Systems, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195

[2]

Achilles Beros, Monique Chyba, Oleksandr Markovichenko. Controlled cellular automata. Networks & Heterogeneous Media, 2019, 14 (1) : 1-22. doi: 10.3934/nhm.2019001

[3]

Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723

[4]

Achilles Beros, Monique Chyba, Kari Noe. Co-evolving cellular automata for morphogenesis. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2053-2071. doi: 10.3934/dcdsb.2019084

[5]

Jon Chaika, David Constantine. A quantitative shrinking target result on Sturmian sequences for rotations. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5189-5204. doi: 10.3934/dcds.2018229

[6]

Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete & Continuous Dynamical Systems, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423

[7]

Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095

[8]

Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQR-V epidemic model based on cellular automata. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 327-337. doi: 10.3934/naco.2015.5.327

[9]

Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, Minghao Chen. Recursive sequences and girard-waring identities with applications in sequence transformation. Electronic Research Archive, 2020, 28 (2) : 1049-1062. doi: 10.3934/era.2020057

[10]

Ferruh Özbudak, Eda Tekin. Correlation distribution of a sequence family generalizing some sequences of Trachtenberg. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020087

[11]

Akane Kawaharada. Singular function emerging from one-dimensional elementary cellular automaton Rule 150. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021125

[12]

Akinori Awazu. Input-dependent wave propagations in asymmetric cellular automata: Possible behaviors of feed-forward loop in biological reaction network. Mathematical Biosciences & Engineering, 2008, 5 (3) : 419-427. doi: 10.3934/mbe.2008.5.419

[13]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[14]

Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050

[15]

Said Hadd, Rosanna Manzo, Abdelaziz Rhandi. Unbounded perturbations of the generator domain. Discrete & Continuous Dynamical Systems, 2015, 35 (2) : 703-723. doi: 10.3934/dcds.2015.35.703

[16]

Marcela Mejía, J. Urías. An asymptotically perfect pseudorandom generator. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 115-126. doi: 10.3934/dcds.2001.7.115

[17]

Jimmy Tseng. On circle rotations and the shrinking target properties. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 1111-1122. doi: 10.3934/dcds.2008.20.1111

[18]

I-Lin Wang, Ju-Chun Lin. A compaction scheme and generator for distribution networks. Journal of Industrial & Management Optimization, 2016, 12 (1) : 117-140. doi: 10.3934/jimo.2016.12.117

[19]

Dmitry Kleinbock, Xi Zhao. An application of lattice points counting to shrinking target problems. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 155-168. doi: 10.3934/dcds.2018007

[20]

Kevin Kuo, Phong Luu, Duy Nguyen, Eric Perkerson, Katherine Thompson, Qing Zhang. Pairs trading: An optimal selling rule. Mathematical Control & Related Fields, 2015, 5 (3) : 489-499. doi: 10.3934/mcrf.2015.5.489

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (162)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]