-
Previous Article
New optimal $(v, \{3,5\}, 1, Q)$ optical orthogonal codes
- AMC Home
- This Issue
-
Next Article
Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$
Modelling the shrinking generator in terms of linear CA
1. | Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas (UNICAMP), R. Sérgio Buarque de Holanda, 651, Cidade Universitária, Campinas - SP, 13083-859 |
2. | Instituto de Tecnologías Físicas y de la Información, Consejo Superior de Investigaciones Científicas, C/Serrano 144, 28006, Madrid, Spain |
References:
[1] |
S. D. Cardell and A. Fúster-Sabater, Cryptanalysing the shrinking generator, Proc. Comp. Sci., 51 (2015), 2893-2897. |
[2] |
S. D. Cardell and A. Fúster-Sabater, Performance of the cryptanalysis over the shrinking generator, in Int. Joint Conf. CISIS'15 and ICEUTE'15 (eds. A.H. et al.), Springer, 2015, 111-121. |
[3] |
S. D. Cardell and A. Fúster-Sabater, Linear models for the self-shrinking generator based on CA, J. Cell. Autom., 11 (2016), 195-211. |
[4] |
K. Cattell and J. C. Muzio, One-dimensional linear hybrid cellular automata, IEEE Trans. Comp.-Aided Des., 15 (1996), 325-335.
doi: 10.1109/12.508317. |
[5] |
D. Coppersmith, H. Krawczyk and Y. Mansour, The shrinking generator, in Adv. Crypt. - CRYPTO '93, Springer-Verlag, 1993, 23-39.
doi: 10.1007/3-540-48329-2_3. |
[6] |
A. K. Das, A. Ganguly, A. Dasgupta, S. Bhawmik and P. P. Chaudhuri, Efficient characterisation of cellular automata, IEEE Proc. Comp. Dig. Techn., 137 (1990), 81-87. |
[7] |
S. Das and D. RoyChowdhury, Car30: A new scalable stream cipher with rule 30, Crypt. Commun., 5 (2013), 137-162.
doi: 10.1007/s12095-012-0079-1. |
[8] |
P. F. Duvall and J. C. Mortick, Decimation of periodic sequences, SIAM J. Appl. Math., 21 (1971), 367-372. |
[9] |
A. Fúster-Sabater and P. Caballero-Gil, Linear solutions for cryptographic nonlinear sequence generators, Phys. Lett. A, 369 (2007), 432-437.
doi: 10.1063/1.2827050. |
[10] |
A. Fúster-Sabater, M. E. Pazo-Robles and P. Caballero-Gil, A simple linearization of the self-shrinking generator by means of cellular automata, Neural Netw., 23 (2010), 461-464. |
[11] |
S. W. Golomb, Shift Register-Sequences, Aegean Park Press, Laguna Hill, California, 1982. |
[12] |
J. Jose, S. Das and D. RoyChowdhury, Inapplicability of fault attacks against trivium on a cellular automata based stream cipher, in 11th Int. Conf. Cell. Autom. Res. Ind. ACRI 2014, Springer-Verlag, 2014, 427-436. |
[13] |
A. Kanso, Modified self-shrinking generator, Comp. Electr. Engin., 36 (2010), 993-1001. |
[14] |
R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge Univ. Press, New York, NY, 1986. |
[15] |
J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory, 15 (1969), 122-127. |
[16] |
W. Meier and O. Staffelbach, Analysis of pseudo random sequences generated by cellular automata, in Adv. Crypt. - EUROCRYPTO '91, Springer-Verlag, Berlin, 1991, 186-199.
doi: 10.1007/3-540-46416-6_17. |
[17] |
W. Meier and O. Staffelbach, The self-shrinking generator, in Adv. Crypt. - EUROCRYPT 1994, Springer-Verlag, 1994, 205-214.
doi: 10.1007/BFb0053436. |
[18] |
A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, FL, 1996. |
[19] |
M. Mihaljević, Y. Zheng and H. Imai, A fast and secure stream cipher based on cellular automata over GF(q), in Proc. Global Telecomm. Conf. GLOBECOM 1998, 1998, 3250-3255. |
[20] |
C. Paar and J. Pelzl, Understanding Cryptography, Springer, Berlin, 2010. |
[21] |
S. Wolfram, Cellular automata as simple self-organizing system, Caltrech preprint, CALT-68-938, 1982. |
[22] |
S. Wolfram, Cryptography with cellular automata, in Adv. Crypt. - EUROCRYPT 1985, Springer-Verlag, 1985, 429-432. |
show all references
References:
[1] |
S. D. Cardell and A. Fúster-Sabater, Cryptanalysing the shrinking generator, Proc. Comp. Sci., 51 (2015), 2893-2897. |
[2] |
S. D. Cardell and A. Fúster-Sabater, Performance of the cryptanalysis over the shrinking generator, in Int. Joint Conf. CISIS'15 and ICEUTE'15 (eds. A.H. et al.), Springer, 2015, 111-121. |
[3] |
S. D. Cardell and A. Fúster-Sabater, Linear models for the self-shrinking generator based on CA, J. Cell. Autom., 11 (2016), 195-211. |
[4] |
K. Cattell and J. C. Muzio, One-dimensional linear hybrid cellular automata, IEEE Trans. Comp.-Aided Des., 15 (1996), 325-335.
doi: 10.1109/12.508317. |
[5] |
D. Coppersmith, H. Krawczyk and Y. Mansour, The shrinking generator, in Adv. Crypt. - CRYPTO '93, Springer-Verlag, 1993, 23-39.
doi: 10.1007/3-540-48329-2_3. |
[6] |
A. K. Das, A. Ganguly, A. Dasgupta, S. Bhawmik and P. P. Chaudhuri, Efficient characterisation of cellular automata, IEEE Proc. Comp. Dig. Techn., 137 (1990), 81-87. |
[7] |
S. Das and D. RoyChowdhury, Car30: A new scalable stream cipher with rule 30, Crypt. Commun., 5 (2013), 137-162.
doi: 10.1007/s12095-012-0079-1. |
[8] |
P. F. Duvall and J. C. Mortick, Decimation of periodic sequences, SIAM J. Appl. Math., 21 (1971), 367-372. |
[9] |
A. Fúster-Sabater and P. Caballero-Gil, Linear solutions for cryptographic nonlinear sequence generators, Phys. Lett. A, 369 (2007), 432-437.
doi: 10.1063/1.2827050. |
[10] |
A. Fúster-Sabater, M. E. Pazo-Robles and P. Caballero-Gil, A simple linearization of the self-shrinking generator by means of cellular automata, Neural Netw., 23 (2010), 461-464. |
[11] |
S. W. Golomb, Shift Register-Sequences, Aegean Park Press, Laguna Hill, California, 1982. |
[12] |
J. Jose, S. Das and D. RoyChowdhury, Inapplicability of fault attacks against trivium on a cellular automata based stream cipher, in 11th Int. Conf. Cell. Autom. Res. Ind. ACRI 2014, Springer-Verlag, 2014, 427-436. |
[13] |
A. Kanso, Modified self-shrinking generator, Comp. Electr. Engin., 36 (2010), 993-1001. |
[14] |
R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge Univ. Press, New York, NY, 1986. |
[15] |
J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory, 15 (1969), 122-127. |
[16] |
W. Meier and O. Staffelbach, Analysis of pseudo random sequences generated by cellular automata, in Adv. Crypt. - EUROCRYPTO '91, Springer-Verlag, Berlin, 1991, 186-199.
doi: 10.1007/3-540-46416-6_17. |
[17] |
W. Meier and O. Staffelbach, The self-shrinking generator, in Adv. Crypt. - EUROCRYPT 1994, Springer-Verlag, 1994, 205-214.
doi: 10.1007/BFb0053436. |
[18] |
A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, FL, 1996. |
[19] |
M. Mihaljević, Y. Zheng and H. Imai, A fast and secure stream cipher based on cellular automata over GF(q), in Proc. Global Telecomm. Conf. GLOBECOM 1998, 1998, 3250-3255. |
[20] |
C. Paar and J. Pelzl, Understanding Cryptography, Springer, Berlin, 2010. |
[21] |
S. Wolfram, Cellular automata as simple self-organizing system, Caltrech preprint, CALT-68-938, 1982. |
[22] |
S. Wolfram, Cryptography with cellular automata, in Adv. Crypt. - EUROCRYPT 1985, Springer-Verlag, 1985, 429-432. |
[1] |
T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195 |
[2] |
Achilles Beros, Monique Chyba, Oleksandr Markovichenko. Controlled cellular automata. Networks and Heterogeneous Media, 2019, 14 (1) : 1-22. doi: 10.3934/nhm.2019001 |
[3] |
Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723 |
[4] |
Achilles Beros, Monique Chyba, Kari Noe. Co-evolving cellular automata for morphogenesis. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2053-2071. doi: 10.3934/dcdsb.2019084 |
[5] |
Jon Chaika, David Constantine. A quantitative shrinking target result on Sturmian sequences for rotations. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5189-5204. doi: 10.3934/dcds.2018229 |
[6] |
Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423 |
[7] |
Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095 |
[8] |
Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQR-V epidemic model based on cellular automata. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 327-337. doi: 10.3934/naco.2015.5.327 |
[9] |
Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, Minghao Chen. Recursive sequences and girard-waring identities with applications in sequence transformation. Electronic Research Archive, 2020, 28 (2) : 1049-1062. doi: 10.3934/era.2020057 |
[10] |
Ferruh Özbudak, Eda Tekin. Correlation distribution of a sequence family generalizing some sequences of Trachtenberg. Advances in Mathematics of Communications, 2021, 15 (4) : 647-662. doi: 10.3934/amc.2020087 |
[11] |
Akane Kawaharada. Singular function emerging from one-dimensional elementary cellular automaton Rule 150. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2115-2128. doi: 10.3934/dcdsb.2021125 |
[12] |
Akinori Awazu. Input-dependent wave propagations in asymmetric cellular automata: Possible behaviors of feed-forward loop in biological reaction network. Mathematical Biosciences & Engineering, 2008, 5 (3) : 419-427. doi: 10.3934/mbe.2008.5.419 |
[13] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[14] |
Said Hadd, Rosanna Manzo, Abdelaziz Rhandi. Unbounded perturbations of the generator domain. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 703-723. doi: 10.3934/dcds.2015.35.703 |
[15] |
Marcela Mejía, J. Urías. An asymptotically perfect pseudorandom generator. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 115-126. doi: 10.3934/dcds.2001.7.115 |
[16] |
Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050 |
[17] |
Jimmy Tseng. On circle rotations and the shrinking target properties. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1111-1122. doi: 10.3934/dcds.2008.20.1111 |
[18] |
I-Lin Wang, Ju-Chun Lin. A compaction scheme and generator for distribution networks. Journal of Industrial and Management Optimization, 2016, 12 (1) : 117-140. doi: 10.3934/jimo.2016.12.117 |
[19] |
Dmitry Kleinbock, Xi Zhao. An application of lattice points counting to shrinking target problems. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 155-168. doi: 10.3934/dcds.2018007 |
[20] |
Shrey Sanadhya. A shrinking target theorem for ergodic transformations of the unit interval. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022042 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]