\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

New optimal $(v, \{3,5\}, 1, Q)$ optical orthogonal codes

Abstract Related Papers Cited by
  • Variable-weight optical orthogonal code (OOC) was introduced by Yang for multimedia optical CDMA systems with multiple quality of service (QoS) requirements. It is proved that optimal $(v, \{3, 5\}, 1, (1/2, 1/2))$-OOCs exist for some complete congruence classes of $v$. In this paper, for $Q\in \{(2/3,1/3), (3/4,1/4)\}$, by using skew starters, it is also proved that optimal $(v, \{3,5\}, 1, Q)$-OOCs exist for some complete congruence classes of $v$.
    Mathematics Subject Classification: Primary: 05B40; Secondary: 94C30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. J. R. Abel and M. Buratti, Some progress on $(v,4,1)$ difference families and optical orthogonal codes, J. Combin. Theory, 106 (2004), 59-75.doi: 10.1016/j.jcta.2004.01.003.

    [2]

    M. Buratti, Cyclic designs with block size $4$ and related optimal optical orthogonal codes, Des. Codes Cryptogr., 26 (2002), 111-125.doi: 10.1023/A:1016505309092.

    [3]

    M. Buratti, Y. Wei, D. Wu, P. Fan and M. Cheng, Relative difference families with variable block sizes and their related OOCs, IEEE Trans. Inform. Theory, 57 (2011), 7489-7497.doi: 10.1109/TIT.2011.2162225.

    [4]

    Y. Chang, R. Fuji-Hara and Y. Miao, Combinatorial constructions of optimal optical orthogonal codes with weight $4$, IEEE Trans. Inform. Theory, 49 (2003), 1283-1292.doi: 10.1109/TIT.2003.810628.

    [5]

    Y. Chang and L. Ji, Optimal $(4up, 5, 1)$ optical orthogonal codes, J. Combin. Des., 12 (2004), 346-361.doi: 10.1002/jcd.20011.

    [6]

    K. Chen, G. Ge and L. Zhu, Starters and related codes, J. Statist. Plann. Inference, 86 (2000), 379-395.doi: 10.1016/S0378-3758(99)00119-6.

    [7]

    F. R. K. Chung, J. A. Salehi and V. K. Wei, Optical orthogonal codes: Design, analysis, and applications, IEEE Trans. Inform. Theory, 35 (1989), 595-604.doi: 10.1109/18.30982.

    [8]

    H. Chung and P.V. Kumar, Optical orthogonal codes-new bounds and an optimal construction, IEEE Trans. Inform. Theory, 36 (1990), 866-873.doi: 10.1109/18.53748.

    [9]

    J. H. Dinitz, Starters, in The CRC Handbook of Combinatorial Designs, Chapman and Hall/CRC, Boca Raton, 2006, 622-628.

    [10]

    J. H. Dinitz and D. R. Stinson, Room squares and related designs, in Contemp. Des. Theory Wiley, New York, 1992, 137-204.

    [11]

    R. Fuji-Hara and Y. Miao, Optical orthogonal codes: Their bounds and new optimal constructions, IEEE Trans. Inform. Theory, 46 (2000), 2396-2406.doi: 10.1109/18.887852.

    [12]

    G. Ge, On $(g,4;1)$-diffference matrices, Discrete Math., 301 (2005), 164-174.doi: 10.1016/j.disc.2005.07.004.

    [13]

    G. Ge and J. Yin, Constructions for optimal $(v, 4, 1)$ optical orthogonal codes, IEEE Trans. Inform. Theory, 47 (2001), 2998-3004.doi: 10.1109/18.959278.

    [14]

    S. W. Golomb, Digital Communication with Space Application, Penisula, Los Altos, 1982.

    [15]

    F. R. Gu and J. Wu, Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems, J. Lightw. Technol., 23 (2005), 740-748.

    [16]

    J. Jiang, D. Wu and P. Fan, General constructions of optimal variable-weight optical orthogonal codes, IEEE Trans. Inform. Theory, 57 (2011), 4488-4496.doi: 10.1109/TIT.2011.2146110.

    [17]

    J. Jiang, D. Wu and M. H. Lee, Some infinite classes of optimal $(v, \{3,4\}, 1, Q)$-OOCs with $Q\in \{(1/3, 2/3), (2/3, 1/3)\}$, Graphs Combin., 29 (2013), 1795-1812.doi: 10.1007/s00373-012-1235-2.

    [18]

    S. Ma and Y. Chang, Constructions of optimal optical orthogonal codes with weight five, J. Combin. Des., 13 (2005), 54-69.doi: 10.1002/jcd.20022.

    [19]

    J. L. Massey and P. Mathys, The collision channel without feedback, IEEE Trans. Inform. Theory, 31 (1985), 192-204.doi: 10.1109/TIT.1985.1057010.

    [20]

    J. A. Salehi, Code division multiple access techniques in optical fiber networks-Part I. Fundamental Principles, IEEE Trans. Commun., {37} (1989), 824-833.

    [21]

    J. A. Salehi, Emerging optical code-division multiple-access communications systems, IEEE Netw., 3 (1989), 31-39.

    [22]

    J. A. Salehi and C. A. Brackett, Code division multiple access techniques in optical fiber networks-Part II. Systems performance analysis, IEEE Trans. Commun., 37 (1989), 834-842.

    [23]

    M. P. Vecchi and J. A. Salehi, Neuromorphic networks based on sparse optical orthogonal codes, in Neural Inform. Proc. Systems-Natural Synth., 1988, 814-823.

    [24]

    D. Wu, H. Zhao, P. Fan and S. Shinohara, Optimal variable-weight optical orthogonal codes via difference packings, IEEE Trans. Inform. Theory, 56 (2010), 4053-4060.doi: 10.1109/TIT.2010.2050927.

    [25]

    G. C. Yang, Variable weight optical orthogonal codes for CDMA networks with multiple performance requirements, in GLOBECOM '93., IEEE, 1993, 488-492.

    [26]

    G. C. Yang, Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements, IEEE Trans. Commun., 44 (1996), 47-55.

    [27]

    J. Yin, Some combinatorial constructions for optical orthogonal codes, Discrete Math., 185 (1998), 201-219.doi: 10.1016/S0012-365X(97)00172-6.

    [28]

    H. Zhao, D. Wu and P. Fan, Constructions of optimal variable-weight optical orthogonal codes, J. Combin. Des., 18 (2010), 274-291.doi: 10.1002/jcd.20246.

    [29]

    H. Zhao, D. Wu and Z. Mo, Further results on optimal $(v,\{3,k\},1,\{1/2,$ $1/2\})$-OOCs for $k=4,5$, Discrete Math., 311 (2011), 16-23.doi: 10.1016/j.disc.2010.09.012.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(196) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return