-
Previous Article
New complementary sets of length $2^m$ and size 4
- AMC Home
- This Issue
-
Next Article
Modelling the shrinking generator in terms of linear CA
New optimal $(v, \{3,5\}, 1, Q)$ optical orthogonal codes
1. | Guangxi Key Lab of Multi-source Information Mining & Security, Guilin 541004, China |
2. | Department of Mathematics, Guangxi Normal University, Guilin, Guangxi 541004 |
3. | School of Sciences, Nantong University, Nantong, Jiangsu 226007 |
References:
[1] |
R. J. R. Abel and M. Buratti, Some progress on $(v,4,1)$ difference families and optical orthogonal codes, J. Combin. Theory, 106 (2004), 59-75.
doi: 10.1016/j.jcta.2004.01.003. |
[2] |
M. Buratti, Cyclic designs with block size $4$ and related optimal optical orthogonal codes, Des. Codes Cryptogr., 26 (2002), 111-125.
doi: 10.1023/A:1016505309092. |
[3] |
M. Buratti, Y. Wei, D. Wu, P. Fan and M. Cheng, Relative difference families with variable block sizes and their related OOCs, IEEE Trans. Inform. Theory, 57 (2011), 7489-7497.
doi: 10.1109/TIT.2011.2162225. |
[4] |
Y. Chang, R. Fuji-Hara and Y. Miao, Combinatorial constructions of optimal optical orthogonal codes with weight $4$, IEEE Trans. Inform. Theory, 49 (2003), 1283-1292.
doi: 10.1109/TIT.2003.810628. |
[5] |
Y. Chang and L. Ji, Optimal $(4up, 5, 1)$ optical orthogonal codes, J. Combin. Des., 12 (2004), 346-361.
doi: 10.1002/jcd.20011. |
[6] |
K. Chen, G. Ge and L. Zhu, Starters and related codes, J. Statist. Plann. Inference, 86 (2000), 379-395.
doi: 10.1016/S0378-3758(99)00119-6. |
[7] |
F. R. K. Chung, J. A. Salehi and V. K. Wei, Optical orthogonal codes: Design, analysis, and applications, IEEE Trans. Inform. Theory, 35 (1989), 595-604.
doi: 10.1109/18.30982. |
[8] |
H. Chung and P.V. Kumar, Optical orthogonal codes-new bounds and an optimal construction, IEEE Trans. Inform. Theory, 36 (1990), 866-873.
doi: 10.1109/18.53748. |
[9] |
J. H. Dinitz, Starters, in The CRC Handbook of Combinatorial Designs, Chapman and Hall/CRC, Boca Raton, 2006, 622-628. |
[10] |
J. H. Dinitz and D. R. Stinson, Room squares and related designs, in Contemp. Des. Theory Wiley, New York, 1992, 137-204. |
[11] |
R. Fuji-Hara and Y. Miao, Optical orthogonal codes: Their bounds and new optimal constructions, IEEE Trans. Inform. Theory, 46 (2000), 2396-2406.
doi: 10.1109/18.887852. |
[12] |
G. Ge, On $(g,4;1)$-diffference matrices, Discrete Math., 301 (2005), 164-174.
doi: 10.1016/j.disc.2005.07.004. |
[13] |
G. Ge and J. Yin, Constructions for optimal $(v, 4, 1)$ optical orthogonal codes, IEEE Trans. Inform. Theory, 47 (2001), 2998-3004.
doi: 10.1109/18.959278. |
[14] |
S. W. Golomb, Digital Communication with Space Application, Penisula, Los Altos, 1982. |
[15] |
F. R. Gu and J. Wu, Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems, J. Lightw. Technol., 23 (2005), 740-748. |
[16] |
J. Jiang, D. Wu and P. Fan, General constructions of optimal variable-weight optical orthogonal codes, IEEE Trans. Inform. Theory, 57 (2011), 4488-4496.
doi: 10.1109/TIT.2011.2146110. |
[17] |
J. Jiang, D. Wu and M. H. Lee, Some infinite classes of optimal $(v, \{3,4\}, 1, Q)$-OOCs with $Q\in \{(1/3, 2/3), (2/3, 1/3)\}$, Graphs Combin., 29 (2013), 1795-1812.
doi: 10.1007/s00373-012-1235-2. |
[18] |
S. Ma and Y. Chang, Constructions of optimal optical orthogonal codes with weight five, J. Combin. Des., 13 (2005), 54-69.
doi: 10.1002/jcd.20022. |
[19] |
J. L. Massey and P. Mathys, The collision channel without feedback, IEEE Trans. Inform. Theory, 31 (1985), 192-204.
doi: 10.1109/TIT.1985.1057010. |
[20] |
J. A. Salehi, Code division multiple access techniques in optical fiber networks-Part I. Fundamental Principles, IEEE Trans. Commun., {37} (1989), 824-833. |
[21] |
J. A. Salehi, Emerging optical code-division multiple-access communications systems, IEEE Netw., 3 (1989), 31-39. |
[22] |
J. A. Salehi and C. A. Brackett, Code division multiple access techniques in optical fiber networks-Part II. Systems performance analysis, IEEE Trans. Commun., 37 (1989), 834-842. |
[23] |
M. P. Vecchi and J. A. Salehi, Neuromorphic networks based on sparse optical orthogonal codes, in Neural Inform. Proc. Systems-Natural Synth., 1988, 814-823. |
[24] |
D. Wu, H. Zhao, P. Fan and S. Shinohara, Optimal variable-weight optical orthogonal codes via difference packings, IEEE Trans. Inform. Theory, 56 (2010), 4053-4060.
doi: 10.1109/TIT.2010.2050927. |
[25] |
G. C. Yang, Variable weight optical orthogonal codes for CDMA networks with multiple performance requirements, in GLOBECOM '93., IEEE, 1993, 488-492. |
[26] |
G. C. Yang, Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements, IEEE Trans. Commun., 44 (1996), 47-55. |
[27] |
J. Yin, Some combinatorial constructions for optical orthogonal codes, Discrete Math., 185 (1998), 201-219.
doi: 10.1016/S0012-365X(97)00172-6. |
[28] |
H. Zhao, D. Wu and P. Fan, Constructions of optimal variable-weight optical orthogonal codes, J. Combin. Des., 18 (2010), 274-291.
doi: 10.1002/jcd.20246. |
[29] |
H. Zhao, D. Wu and Z. Mo, Further results on optimal $(v,\{3,k\},1,\{1/2,$ $1/2\})$-OOCs for $k=4,5$, Discrete Math., 311 (2011), 16-23.
doi: 10.1016/j.disc.2010.09.012. |
show all references
References:
[1] |
R. J. R. Abel and M. Buratti, Some progress on $(v,4,1)$ difference families and optical orthogonal codes, J. Combin. Theory, 106 (2004), 59-75.
doi: 10.1016/j.jcta.2004.01.003. |
[2] |
M. Buratti, Cyclic designs with block size $4$ and related optimal optical orthogonal codes, Des. Codes Cryptogr., 26 (2002), 111-125.
doi: 10.1023/A:1016505309092. |
[3] |
M. Buratti, Y. Wei, D. Wu, P. Fan and M. Cheng, Relative difference families with variable block sizes and their related OOCs, IEEE Trans. Inform. Theory, 57 (2011), 7489-7497.
doi: 10.1109/TIT.2011.2162225. |
[4] |
Y. Chang, R. Fuji-Hara and Y. Miao, Combinatorial constructions of optimal optical orthogonal codes with weight $4$, IEEE Trans. Inform. Theory, 49 (2003), 1283-1292.
doi: 10.1109/TIT.2003.810628. |
[5] |
Y. Chang and L. Ji, Optimal $(4up, 5, 1)$ optical orthogonal codes, J. Combin. Des., 12 (2004), 346-361.
doi: 10.1002/jcd.20011. |
[6] |
K. Chen, G. Ge and L. Zhu, Starters and related codes, J. Statist. Plann. Inference, 86 (2000), 379-395.
doi: 10.1016/S0378-3758(99)00119-6. |
[7] |
F. R. K. Chung, J. A. Salehi and V. K. Wei, Optical orthogonal codes: Design, analysis, and applications, IEEE Trans. Inform. Theory, 35 (1989), 595-604.
doi: 10.1109/18.30982. |
[8] |
H. Chung and P.V. Kumar, Optical orthogonal codes-new bounds and an optimal construction, IEEE Trans. Inform. Theory, 36 (1990), 866-873.
doi: 10.1109/18.53748. |
[9] |
J. H. Dinitz, Starters, in The CRC Handbook of Combinatorial Designs, Chapman and Hall/CRC, Boca Raton, 2006, 622-628. |
[10] |
J. H. Dinitz and D. R. Stinson, Room squares and related designs, in Contemp. Des. Theory Wiley, New York, 1992, 137-204. |
[11] |
R. Fuji-Hara and Y. Miao, Optical orthogonal codes: Their bounds and new optimal constructions, IEEE Trans. Inform. Theory, 46 (2000), 2396-2406.
doi: 10.1109/18.887852. |
[12] |
G. Ge, On $(g,4;1)$-diffference matrices, Discrete Math., 301 (2005), 164-174.
doi: 10.1016/j.disc.2005.07.004. |
[13] |
G. Ge and J. Yin, Constructions for optimal $(v, 4, 1)$ optical orthogonal codes, IEEE Trans. Inform. Theory, 47 (2001), 2998-3004.
doi: 10.1109/18.959278. |
[14] |
S. W. Golomb, Digital Communication with Space Application, Penisula, Los Altos, 1982. |
[15] |
F. R. Gu and J. Wu, Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems, J. Lightw. Technol., 23 (2005), 740-748. |
[16] |
J. Jiang, D. Wu and P. Fan, General constructions of optimal variable-weight optical orthogonal codes, IEEE Trans. Inform. Theory, 57 (2011), 4488-4496.
doi: 10.1109/TIT.2011.2146110. |
[17] |
J. Jiang, D. Wu and M. H. Lee, Some infinite classes of optimal $(v, \{3,4\}, 1, Q)$-OOCs with $Q\in \{(1/3, 2/3), (2/3, 1/3)\}$, Graphs Combin., 29 (2013), 1795-1812.
doi: 10.1007/s00373-012-1235-2. |
[18] |
S. Ma and Y. Chang, Constructions of optimal optical orthogonal codes with weight five, J. Combin. Des., 13 (2005), 54-69.
doi: 10.1002/jcd.20022. |
[19] |
J. L. Massey and P. Mathys, The collision channel without feedback, IEEE Trans. Inform. Theory, 31 (1985), 192-204.
doi: 10.1109/TIT.1985.1057010. |
[20] |
J. A. Salehi, Code division multiple access techniques in optical fiber networks-Part I. Fundamental Principles, IEEE Trans. Commun., {37} (1989), 824-833. |
[21] |
J. A. Salehi, Emerging optical code-division multiple-access communications systems, IEEE Netw., 3 (1989), 31-39. |
[22] |
J. A. Salehi and C. A. Brackett, Code division multiple access techniques in optical fiber networks-Part II. Systems performance analysis, IEEE Trans. Commun., 37 (1989), 834-842. |
[23] |
M. P. Vecchi and J. A. Salehi, Neuromorphic networks based on sparse optical orthogonal codes, in Neural Inform. Proc. Systems-Natural Synth., 1988, 814-823. |
[24] |
D. Wu, H. Zhao, P. Fan and S. Shinohara, Optimal variable-weight optical orthogonal codes via difference packings, IEEE Trans. Inform. Theory, 56 (2010), 4053-4060.
doi: 10.1109/TIT.2010.2050927. |
[25] |
G. C. Yang, Variable weight optical orthogonal codes for CDMA networks with multiple performance requirements, in GLOBECOM '93., IEEE, 1993, 488-492. |
[26] |
G. C. Yang, Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements, IEEE Trans. Commun., 44 (1996), 47-55. |
[27] |
J. Yin, Some combinatorial constructions for optical orthogonal codes, Discrete Math., 185 (1998), 201-219.
doi: 10.1016/S0012-365X(97)00172-6. |
[28] |
H. Zhao, D. Wu and P. Fan, Constructions of optimal variable-weight optical orthogonal codes, J. Combin. Des., 18 (2010), 274-291.
doi: 10.1002/jcd.20246. |
[29] |
H. Zhao, D. Wu and Z. Mo, Further results on optimal $(v,\{3,k\},1,\{1/2,$ $1/2\})$-OOCs for $k=4,5$, Discrete Math., 311 (2011), 16-23.
doi: 10.1016/j.disc.2010.09.012. |
[1] |
Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032 |
[2] |
Chuanxin Zhao, Lin Jiang, Kok Lay Teo. A hybrid chaos firefly algorithm for three-dimensional irregular packing problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 409-429. doi: 10.3934/jimo.2018160 |
[3] |
Wenxun Xing, Feng Chen. A-shaped bin packing: Worst case analysis via simulation. Journal of Industrial and Management Optimization, 2005, 1 (3) : 323-335. doi: 10.3934/jimo.2005.1.323 |
[4] |
Shinji Imahori, Yoshiyuki Karuno, Kenju Tateishi. Pseudo-polynomial time algorithms for combinatorial food mixture packing problems. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1057-1073. doi: 10.3934/jimo.2016.12.1057 |
[5] |
Mao Chen, Xiangyang Tang, Zhizhong Zeng, Sanya Liu. An efficient heuristic algorithm for two-dimensional rectangular packing problem with central rectangle. Journal of Industrial and Management Optimization, 2020, 16 (1) : 495-510. doi: 10.3934/jimo.2018164 |
[6] |
Cuiling Fan, Koji Momihara. Unified combinatorial constructions of optimal optical orthogonal codes. Advances in Mathematics of Communications, 2014, 8 (1) : 53-66. doi: 10.3934/amc.2014.8.53 |
[7] |
T. L. Alderson, K. E. Mellinger. Geometric constructions of optimal optical orthogonal codes. Advances in Mathematics of Communications, 2008, 2 (4) : 451-467. doi: 10.3934/amc.2008.2.451 |
[8] |
Boris P. Belinskiy. Optimal design of an optical length of a rod with the given mass. Conference Publications, 2007, 2007 (Special) : 85-91. doi: 10.3934/proc.2007.2007.85 |
[9] |
Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018 |
[10] |
Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017 |
[11] |
Gerardo Vega, Jesús E. Cuén-Ramos. The weight distribution of families of reducible cyclic codes through the weight distribution of some irreducible cyclic codes. Advances in Mathematics of Communications, 2020, 14 (3) : 525-533. doi: 10.3934/amc.2020059 |
[12] |
Leetika Kathuria, Madhu Raka. Existence of cyclic self-orthogonal codes: A note on a result of Vera Pless. Advances in Mathematics of Communications, 2012, 6 (4) : 499-503. doi: 10.3934/amc.2012.6.499 |
[13] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[14] |
Martianus Frederic Ezerman, San Ling, Patrick Solé, Olfa Yemen. From skew-cyclic codes to asymmetric quantum codes. Advances in Mathematics of Communications, 2011, 5 (1) : 41-57. doi: 10.3934/amc.2011.5.41 |
[15] |
Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial and Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819 |
[16] |
Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409 |
[17] |
Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021002 |
[18] |
Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008 |
[19] |
Denis S. Krotov, Patric R. J. Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013 |
[20] |
Fatmanur Gursoy, Irfan Siap, Bahattin Yildiz. Construction of skew cyclic codes over $\mathbb F_q+v\mathbb F_q$. Advances in Mathematics of Communications, 2014, 8 (3) : 313-322. doi: 10.3934/amc.2014.8.313 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]