November  2016, 10(4): 825-845. doi: 10.3934/amc.2016043

New complementary sets of length $2^m$ and size 4

1. 

State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, 710071, China, China

2. 

National Computer Network Intrusion Protection Center, UCAS, Beijing 100043, China

Received  January 2015 Revised  April 2016 Published  November 2016

We construct new complementary sequence sets of size $4$, using a graphical description. We explain how the construction can be seen as a special case of a less explicit array construction by Parker and Riera and, at the same time, a generalization of another construction by the same authors. Some generalizations of the construction are also given, which are not in the construction of Parker and Riera. Lower bounds and upper bounds of the number of sequences in the constructions are analyzed.
Citation: Gaofei Wu, Yuqing Zhang, Xuefeng Liu. New complementary sets of length $2^m$ and size 4. Advances in Mathematics of Communications, 2016, 10 (4) : 825-845. doi: 10.3934/amc.2016043
References:
[1]

S. Z. Budĭsin, P. Spasojević, Paraunitary generation/correlation of QAM complementary sequence pairs,, Cryptogr. Commun., 6 (2014), 59. doi: 10.1007/s12095-013-0087-9. Google Scholar

[2]

C.-Y. Chen, C.-H. Wang, and C.-C. Chao, Complementary sets and Reed-Muller codes for peak-to-average power ratio reduction in OFDM,, in Int. Symp. Appl. Algebra Algebr. Algor. Error-Corr. Codes, (2006), 317. doi: 10.1007/11617983_31. Google Scholar

[3]

J. A. Davis and J. Jedwab, Peak-to-mean power control for OFDM, Golay complementary sequences, and Reed-Muller codes,, IEEE Trans. Inform. Theory, 45 (1999), 2397. doi: 10.1109/18.796380. Google Scholar

[4]

F. Fiedler, J. Jedwab and M. G. Parker, A framework for the construction of Golay sequences,, IEEE Trans. Inform. Theory, 54 (2008), 3113. doi: 10.1109/TIT.2008.924667. Google Scholar

[5]

F. Fiedler, J. Jedwab and M. G. Parker, A multi-dimensional approach to the construction and enumeration of Golay complementary sequences,, J. Combin. Theory Ser. A, 115 (2008), 753. doi: 10.1016/j.jcta.2007.10.001. Google Scholar

[6]

M. J. E. Golay, Complementary series,, IEEE Trans. Inform. Theory, 7 (1961), 82. Google Scholar

[7]

S. Litsyn, Peak Power Control in Multi-carrier Communications,, Cambridge Univ. Press, (2007). Google Scholar

[8]

M. G. Parker and C. Riera, Generalised complementary arrays,, IMA Int. Conf. Crypt. Coding, (2011), 41. doi: 10.1007/978-3-642-25516-8_4. Google Scholar

[9]

M. G. Parker and C. Tellambura, Golay-Davis-Jedwab complementary sequences and Rudin-Shapiro constructions,, in Int. Symp. Inform. Theory, (2001). Google Scholar

[10]

M. G. Parker and C. Tellambura, A construction for binary sequence sets with low peak-to-average power ratio,, Reports in Informatics, (2003). Google Scholar

[11]

K. G. Paterson, Generalized Reed-Muller codes and power control in OFDM modulation,, IEEE Trans. Inform. Theory, 46 (2000), 104. doi: 10.1109/18.817512. Google Scholar

[12]

K.-U. Schmidt, On cosets of the generalized first-order Reed-Muller code with low PMEPR,, IEEE Trans. Inform. Theory, 52 (2006), 3220. doi: 10.1109/TIT.2006.876252. Google Scholar

[13]

K.-U. Schmidt, Complementary sets, generalized Reed-Muller codes, and power control for OFDM,, IEEE Trans. Inform. Theory, 53 (2007), 808. doi: 10.1109/TIT.2006.889723. Google Scholar

[14]

T. E. Stinchcombe, Aperiodic autocorrelations of length $2^m$ sequences, complementarity, and power control for OFDM,, Ph.D. thesis, (2000). Google Scholar

[15]

Z. Wang, M. G. Parker, G. Gong and G. Wu, On the PMEPR of the binary Golay sequences of length $2^n$,, IEEE Trans. Inform. Theory, 60 (2014), 2391. doi: 10.1109/TIT.2014.2300867. Google Scholar

[16]

Z. Wang, G. Wu and H. Li, Improved PMEPR bound on near-complementary sequences constructed by Yu and Gong,, Electr. Lett., 49 (2013), 73. Google Scholar

[17]

G. Wu and M. G. Parker, A complementary construction using mutually unbiased bases,, Crypt. Commun., 6 (2014), 3. doi: 10.1007/s12095-013-0095-9. Google Scholar

[18]

G. Wu, Y. Zhang and Z. Wang, Construction of near-complementary sequences with low PMEPR for peak power control in OFDM,, IEICE Trans. Fundam., E95-A (2012), 1881. Google Scholar

[19]

N. Y. Yu and G. Gong, Near-complementary sequences with low PMEPR for peak power control in multicarrier communications,, IEEE Trans. Inform. Theory, 57 (2011), 505. doi: 10.1109/TIT.2010.2090230. Google Scholar

show all references

References:
[1]

S. Z. Budĭsin, P. Spasojević, Paraunitary generation/correlation of QAM complementary sequence pairs,, Cryptogr. Commun., 6 (2014), 59. doi: 10.1007/s12095-013-0087-9. Google Scholar

[2]

C.-Y. Chen, C.-H. Wang, and C.-C. Chao, Complementary sets and Reed-Muller codes for peak-to-average power ratio reduction in OFDM,, in Int. Symp. Appl. Algebra Algebr. Algor. Error-Corr. Codes, (2006), 317. doi: 10.1007/11617983_31. Google Scholar

[3]

J. A. Davis and J. Jedwab, Peak-to-mean power control for OFDM, Golay complementary sequences, and Reed-Muller codes,, IEEE Trans. Inform. Theory, 45 (1999), 2397. doi: 10.1109/18.796380. Google Scholar

[4]

F. Fiedler, J. Jedwab and M. G. Parker, A framework for the construction of Golay sequences,, IEEE Trans. Inform. Theory, 54 (2008), 3113. doi: 10.1109/TIT.2008.924667. Google Scholar

[5]

F. Fiedler, J. Jedwab and M. G. Parker, A multi-dimensional approach to the construction and enumeration of Golay complementary sequences,, J. Combin. Theory Ser. A, 115 (2008), 753. doi: 10.1016/j.jcta.2007.10.001. Google Scholar

[6]

M. J. E. Golay, Complementary series,, IEEE Trans. Inform. Theory, 7 (1961), 82. Google Scholar

[7]

S. Litsyn, Peak Power Control in Multi-carrier Communications,, Cambridge Univ. Press, (2007). Google Scholar

[8]

M. G. Parker and C. Riera, Generalised complementary arrays,, IMA Int. Conf. Crypt. Coding, (2011), 41. doi: 10.1007/978-3-642-25516-8_4. Google Scholar

[9]

M. G. Parker and C. Tellambura, Golay-Davis-Jedwab complementary sequences and Rudin-Shapiro constructions,, in Int. Symp. Inform. Theory, (2001). Google Scholar

[10]

M. G. Parker and C. Tellambura, A construction for binary sequence sets with low peak-to-average power ratio,, Reports in Informatics, (2003). Google Scholar

[11]

K. G. Paterson, Generalized Reed-Muller codes and power control in OFDM modulation,, IEEE Trans. Inform. Theory, 46 (2000), 104. doi: 10.1109/18.817512. Google Scholar

[12]

K.-U. Schmidt, On cosets of the generalized first-order Reed-Muller code with low PMEPR,, IEEE Trans. Inform. Theory, 52 (2006), 3220. doi: 10.1109/TIT.2006.876252. Google Scholar

[13]

K.-U. Schmidt, Complementary sets, generalized Reed-Muller codes, and power control for OFDM,, IEEE Trans. Inform. Theory, 53 (2007), 808. doi: 10.1109/TIT.2006.889723. Google Scholar

[14]

T. E. Stinchcombe, Aperiodic autocorrelations of length $2^m$ sequences, complementarity, and power control for OFDM,, Ph.D. thesis, (2000). Google Scholar

[15]

Z. Wang, M. G. Parker, G. Gong and G. Wu, On the PMEPR of the binary Golay sequences of length $2^n$,, IEEE Trans. Inform. Theory, 60 (2014), 2391. doi: 10.1109/TIT.2014.2300867. Google Scholar

[16]

Z. Wang, G. Wu and H. Li, Improved PMEPR bound on near-complementary sequences constructed by Yu and Gong,, Electr. Lett., 49 (2013), 73. Google Scholar

[17]

G. Wu and M. G. Parker, A complementary construction using mutually unbiased bases,, Crypt. Commun., 6 (2014), 3. doi: 10.1007/s12095-013-0095-9. Google Scholar

[18]

G. Wu, Y. Zhang and Z. Wang, Construction of near-complementary sequences with low PMEPR for peak power control in OFDM,, IEICE Trans. Fundam., E95-A (2012), 1881. Google Scholar

[19]

N. Y. Yu and G. Gong, Near-complementary sequences with low PMEPR for peak power control in multicarrier communications,, IEEE Trans. Inform. Theory, 57 (2011), 505. doi: 10.1109/TIT.2010.2090230. Google Scholar

[1]

Martino Borello, Olivier Mila. Symmetries of weight enumerators and applications to Reed-Muller codes. Advances in Mathematics of Communications, 2019, 13 (2) : 313-328. doi: 10.3934/amc.2019021

[2]

Daniele Bartoli, Adnen Sboui, Leo Storme. Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes. Advances in Mathematics of Communications, 2016, 10 (2) : 355-365. doi: 10.3934/amc.2016010

[3]

Olav Geil, Stefano Martin. Relative generalized Hamming weights of q-ary Reed-Muller codes. Advances in Mathematics of Communications, 2017, 11 (3) : 503-531. doi: 10.3934/amc.2017041

[4]

Andreas Klein, Leo Storme. On the non-minimality of the largest weight codewords in the binary Reed-Muller codes. Advances in Mathematics of Communications, 2011, 5 (2) : 333-337. doi: 10.3934/amc.2011.5.333

[5]

Frank Fiedler. Small Golay sequences. Advances in Mathematics of Communications, 2013, 7 (4) : 379-407. doi: 10.3934/amc.2013.7.379

[6]

Yang Yang, Xiaohu Tang, Guang Gong. Even periodic and odd periodic complementary sequence pairs from generalized Boolean functions. Advances in Mathematics of Communications, 2013, 7 (2) : 113-125. doi: 10.3934/amc.2013.7.113

[7]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543

[8]

Constanza Riera, Pantelimon Stănică. Landscape Boolean functions. Advances in Mathematics of Communications, 2019, 13 (4) : 613-627. doi: 10.3934/amc.2019038

[9]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

[10]

B. K. Dass, Namita Sharma, Rashmi Verma. Characterization of extended Hamming and Golay codes as perfect codes in poset block spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 629-639. doi: 10.3934/amc.2018037

[11]

Claude Carlet, Serge Feukoua. Three basic questions on Boolean functions. Advances in Mathematics of Communications, 2017, 11 (4) : 837-855. doi: 10.3934/amc.2017061

[12]

Sihem Mesnager, Gérard Cohen. Fast algebraic immunity of Boolean functions. Advances in Mathematics of Communications, 2017, 11 (2) : 373-377. doi: 10.3934/amc.2017031

[13]

Zilong Wang, Guang Gong, Rongquan Feng. A generalized construction of OFDM $M$-QAM sequences with low peak-to-average power ratio. Advances in Mathematics of Communications, 2009, 3 (4) : 421-428. doi: 10.3934/amc.2009.3.421

[14]

Yujuan Li, Guizhen Zhu. On the error distance of extended Reed-Solomon codes. Advances in Mathematics of Communications, 2016, 10 (2) : 413-427. doi: 10.3934/amc.2016015

[15]

Peter Beelen, David Glynn, Tom Høholdt, Krishna Kaipa. Counting generalized Reed-Solomon codes. Advances in Mathematics of Communications, 2017, 11 (4) : 777-790. doi: 10.3934/amc.2017057

[16]

Antonio Cafure, Guillermo Matera, Melina Privitelli. Singularities of symmetric hypersurfaces and Reed-Solomon codes. Advances in Mathematics of Communications, 2012, 6 (1) : 69-94. doi: 10.3934/amc.2012.6.69

[17]

Jian Liu, Sihem Mesnager, Lusheng Chen. Variation on correlation immune Boolean and vectorial functions. Advances in Mathematics of Communications, 2016, 10 (4) : 895-919. doi: 10.3934/amc.2016048

[18]

Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237-247. doi: 10.3934/amc.2012.6.237

[19]

Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim, Dae-Woon Lim. New construction methods of quaternary periodic complementary sequence sets. Advances in Mathematics of Communications, 2010, 4 (1) : 61-68. doi: 10.3934/amc.2010.4.61

[20]

Johan Rosenkilde. Power decoding Reed-Solomon codes up to the Johnson radius. Advances in Mathematics of Communications, 2018, 12 (1) : 81-106. doi: 10.3934/amc.2018005

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]