-
Previous Article
Some new two-weight ternary and quinary codes of lengths six and twelve
- AMC Home
- This Issue
-
Next Article
New optimal $(v, \{3,5\}, 1, Q)$ optical orthogonal codes
New complementary sets of length $2^m$ and size 4
1. | State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, 710071, China, China |
2. | National Computer Network Intrusion Protection Center, UCAS, Beijing 100043, China |
References:
[1] |
S. Z. Budĭsin, P. Spasojević, Paraunitary generation/correlation of QAM complementary sequence pairs, Cryptogr. Commun., 6 (2014), 59-102.
doi: 10.1007/s12095-013-0087-9. |
[2] |
C.-Y. Chen, C.-H. Wang, and C.-C. Chao, Complementary sets and Reed-Muller codes for peak-to-average power ratio reduction in OFDM, in Int. Symp. Appl. Algebra Algebr. Algor. Error-Corr. Codes, Springer, Berlin, 2006, 317-327.
doi: 10.1007/11617983_31. |
[3] |
J. A. Davis and J. Jedwab, Peak-to-mean power control for OFDM, Golay complementary sequences, and Reed-Muller codes, IEEE Trans. Inform. Theory, 45 (1999), 2397-2417.
doi: 10.1109/18.796380. |
[4] |
F. Fiedler, J. Jedwab and M. G. Parker, A framework for the construction of Golay sequences, IEEE Trans. Inform. Theory, 54 (2008), 3113-3129.
doi: 10.1109/TIT.2008.924667. |
[5] |
F. Fiedler, J. Jedwab and M. G. Parker, A multi-dimensional approach to the construction and enumeration of Golay complementary sequences, J. Combin. Theory Ser. A, 115 (2008), 753-776.
doi: 10.1016/j.jcta.2007.10.001. |
[6] |
M. J. E. Golay, Complementary series, IEEE Trans. Inform. Theory, 7 (1961), 82-87. |
[7] |
S. Litsyn, Peak Power Control in Multi-carrier Communications, Cambridge Univ. Press, 2007. |
[8] |
M. G. Parker and C. Riera, Generalised complementary arrays, IMA Int. Conf. Crypt. Coding, Springer, Berlin, 2011, 41-60.
doi: 10.1007/978-3-642-25516-8_4. |
[9] |
M. G. Parker and C. Tellambura, Golay-Davis-Jedwab complementary sequences and Rudin-Shapiro constructions, in Int. Symp. Inform. Theory, 2001, 302. |
[10] |
M. G. Parker and C. Tellambura, A construction for binary sequence sets with low peak-to-average power ratio, Reports in Informatics, Univ. Bergen, 2003. |
[11] |
K. G. Paterson, Generalized Reed-Muller codes and power control in OFDM modulation, IEEE Trans. Inform. Theory, 46 (2000), 104-120.
doi: 10.1109/18.817512. |
[12] |
K.-U. Schmidt, On cosets of the generalized first-order Reed-Muller code with low PMEPR, IEEE Trans. Inform. Theory, 52 (2006), 3220-3232.
doi: 10.1109/TIT.2006.876252. |
[13] |
K.-U. Schmidt, Complementary sets, generalized Reed-Muller codes, and power control for OFDM, IEEE Trans. Inform. Theory, 53 (2007), 808-814.
doi: 10.1109/TIT.2006.889723. |
[14] |
T. E. Stinchcombe, Aperiodic autocorrelations of length $2^m$ sequences, complementarity, and power control for OFDM, Ph.D. thesis, Univ. London, 2000. |
[15] |
Z. Wang, M. G. Parker, G. Gong and G. Wu, On the PMEPR of the binary Golay sequences of length $2^n$, IEEE Trans. Inform. Theory, 60 (2014), 2391-2398.
doi: 10.1109/TIT.2014.2300867. |
[16] |
Z. Wang, G. Wu and H. Li, Improved PMEPR bound on near-complementary sequences constructed by Yu and Gong, Electr. Lett., 49 (2013), 73-75. |
[17] |
G. Wu and M. G. Parker, A complementary construction using mutually unbiased bases, Crypt. Commun., 6 (2014), 3-25.
doi: 10.1007/s12095-013-0095-9. |
[18] |
G. Wu, Y. Zhang and Z. Wang, Construction of near-complementary sequences with low PMEPR for peak power control in OFDM, IEICE Trans. Fundam., E95-A (2012), 1881-1887. |
[19] |
N. Y. Yu and G. Gong, Near-complementary sequences with low PMEPR for peak power control in multicarrier communications, IEEE Trans. Inform. Theory, 57 (2011), 505-513.
doi: 10.1109/TIT.2010.2090230. |
show all references
References:
[1] |
S. Z. Budĭsin, P. Spasojević, Paraunitary generation/correlation of QAM complementary sequence pairs, Cryptogr. Commun., 6 (2014), 59-102.
doi: 10.1007/s12095-013-0087-9. |
[2] |
C.-Y. Chen, C.-H. Wang, and C.-C. Chao, Complementary sets and Reed-Muller codes for peak-to-average power ratio reduction in OFDM, in Int. Symp. Appl. Algebra Algebr. Algor. Error-Corr. Codes, Springer, Berlin, 2006, 317-327.
doi: 10.1007/11617983_31. |
[3] |
J. A. Davis and J. Jedwab, Peak-to-mean power control for OFDM, Golay complementary sequences, and Reed-Muller codes, IEEE Trans. Inform. Theory, 45 (1999), 2397-2417.
doi: 10.1109/18.796380. |
[4] |
F. Fiedler, J. Jedwab and M. G. Parker, A framework for the construction of Golay sequences, IEEE Trans. Inform. Theory, 54 (2008), 3113-3129.
doi: 10.1109/TIT.2008.924667. |
[5] |
F. Fiedler, J. Jedwab and M. G. Parker, A multi-dimensional approach to the construction and enumeration of Golay complementary sequences, J. Combin. Theory Ser. A, 115 (2008), 753-776.
doi: 10.1016/j.jcta.2007.10.001. |
[6] |
M. J. E. Golay, Complementary series, IEEE Trans. Inform. Theory, 7 (1961), 82-87. |
[7] |
S. Litsyn, Peak Power Control in Multi-carrier Communications, Cambridge Univ. Press, 2007. |
[8] |
M. G. Parker and C. Riera, Generalised complementary arrays, IMA Int. Conf. Crypt. Coding, Springer, Berlin, 2011, 41-60.
doi: 10.1007/978-3-642-25516-8_4. |
[9] |
M. G. Parker and C. Tellambura, Golay-Davis-Jedwab complementary sequences and Rudin-Shapiro constructions, in Int. Symp. Inform. Theory, 2001, 302. |
[10] |
M. G. Parker and C. Tellambura, A construction for binary sequence sets with low peak-to-average power ratio, Reports in Informatics, Univ. Bergen, 2003. |
[11] |
K. G. Paterson, Generalized Reed-Muller codes and power control in OFDM modulation, IEEE Trans. Inform. Theory, 46 (2000), 104-120.
doi: 10.1109/18.817512. |
[12] |
K.-U. Schmidt, On cosets of the generalized first-order Reed-Muller code with low PMEPR, IEEE Trans. Inform. Theory, 52 (2006), 3220-3232.
doi: 10.1109/TIT.2006.876252. |
[13] |
K.-U. Schmidt, Complementary sets, generalized Reed-Muller codes, and power control for OFDM, IEEE Trans. Inform. Theory, 53 (2007), 808-814.
doi: 10.1109/TIT.2006.889723. |
[14] |
T. E. Stinchcombe, Aperiodic autocorrelations of length $2^m$ sequences, complementarity, and power control for OFDM, Ph.D. thesis, Univ. London, 2000. |
[15] |
Z. Wang, M. G. Parker, G. Gong and G. Wu, On the PMEPR of the binary Golay sequences of length $2^n$, IEEE Trans. Inform. Theory, 60 (2014), 2391-2398.
doi: 10.1109/TIT.2014.2300867. |
[16] |
Z. Wang, G. Wu and H. Li, Improved PMEPR bound on near-complementary sequences constructed by Yu and Gong, Electr. Lett., 49 (2013), 73-75. |
[17] |
G. Wu and M. G. Parker, A complementary construction using mutually unbiased bases, Crypt. Commun., 6 (2014), 3-25.
doi: 10.1007/s12095-013-0095-9. |
[18] |
G. Wu, Y. Zhang and Z. Wang, Construction of near-complementary sequences with low PMEPR for peak power control in OFDM, IEICE Trans. Fundam., E95-A (2012), 1881-1887. |
[19] |
N. Y. Yu and G. Gong, Near-complementary sequences with low PMEPR for peak power control in multicarrier communications, IEEE Trans. Inform. Theory, 57 (2011), 505-513.
doi: 10.1109/TIT.2010.2090230. |
[1] |
Martino Borello, Olivier Mila. Symmetries of weight enumerators and applications to Reed-Muller codes. Advances in Mathematics of Communications, 2019, 13 (2) : 313-328. doi: 10.3934/amc.2019021 |
[2] |
Daniele Bartoli, Adnen Sboui, Leo Storme. Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes. Advances in Mathematics of Communications, 2016, 10 (2) : 355-365. doi: 10.3934/amc.2016010 |
[3] |
Olav Geil, Stefano Martin. Relative generalized Hamming weights of q-ary Reed-Muller codes. Advances in Mathematics of Communications, 2017, 11 (3) : 503-531. doi: 10.3934/amc.2017041 |
[4] |
Andreas Klein, Leo Storme. On the non-minimality of the largest weight codewords in the binary Reed-Muller codes. Advances in Mathematics of Communications, 2011, 5 (2) : 333-337. doi: 10.3934/amc.2011.5.333 |
[5] |
Bingsheng Shen, Yang Yang, Ruibin Ren. Three constructions of Golay complementary array sets. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022019 |
[6] |
Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040 |
[7] |
Frank Fiedler. Small Golay sequences. Advances in Mathematics of Communications, 2013, 7 (4) : 379-407. doi: 10.3934/amc.2013.7.379 |
[8] |
Yang Yang, Xiaohu Tang, Guang Gong. Even periodic and odd periodic complementary sequence pairs from generalized Boolean functions. Advances in Mathematics of Communications, 2013, 7 (2) : 113-125. doi: 10.3934/amc.2013.7.113 |
[9] |
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543 |
[10] |
Constanza Riera, Pantelimon Stănică. Landscape Boolean functions. Advances in Mathematics of Communications, 2019, 13 (4) : 613-627. doi: 10.3934/amc.2019038 |
[11] |
Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028 |
[12] |
B. K. Dass, Namita Sharma, Rashmi Verma. Characterization of extended Hamming and Golay codes as perfect codes in poset block spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 629-639. doi: 10.3934/amc.2018037 |
[13] |
Zilong Wang, Guang Gong, Rongquan Feng. A generalized construction of OFDM $M$-QAM sequences with low peak-to-average power ratio. Advances in Mathematics of Communications, 2009, 3 (4) : 421-428. doi: 10.3934/amc.2009.3.421 |
[14] |
Yujuan Li, Guizhen Zhu. On the error distance of extended Reed-Solomon codes. Advances in Mathematics of Communications, 2016, 10 (2) : 413-427. doi: 10.3934/amc.2016015 |
[15] |
Peter Beelen, David Glynn, Tom Høholdt, Krishna Kaipa. Counting generalized Reed-Solomon codes. Advances in Mathematics of Communications, 2017, 11 (4) : 777-790. doi: 10.3934/amc.2017057 |
[16] |
Antonio Cafure, Guillermo Matera, Melina Privitelli. Singularities of symmetric hypersurfaces and Reed-Solomon codes. Advances in Mathematics of Communications, 2012, 6 (1) : 69-94. doi: 10.3934/amc.2012.6.69 |
[17] |
Sihem Mesnager, Gérard Cohen. Fast algebraic immunity of Boolean functions. Advances in Mathematics of Communications, 2017, 11 (2) : 373-377. doi: 10.3934/amc.2017031 |
[18] |
Claude Carlet, Serge Feukoua. Three basic questions on Boolean functions. Advances in Mathematics of Communications, 2017, 11 (4) : 837-855. doi: 10.3934/amc.2017061 |
[19] |
Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069 |
[20] |
Claude Carlet. Parameterization of Boolean functions by vectorial functions and associated constructions. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022013 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]