Citation: |
[1] |
W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Amer. Math. Soc., 1994.doi: 10.1090/gsm/003. |
[2] |
M. Aliasgari, M. R. Sadeghi and D. Panario, Gröbner bases for lattices and an algebraic decoding algorithm, IEEE Trans. Commun., 61 (2013), 1222-1230. |
[3] |
A. H. Banihashemi and I. F. Blake, Trellis complexity and minimal trellis diagrams of lattices, IEEE Trans. Inform. Theory, 44 (1998), 1829-1847.doi: 10.1109/18.705562. |
[4] |
A. H. Banihashemi and F. R. Kschischang, Tanner graphs for group block codes and lattices: construction and complexity, IEEE Trans. Inform. Theory, 47 (2001), 822-834.doi: 10.1109/18.910592. |
[5] |
M. Borges-Quintana, M. A. Borges-Trenard and E. Martínez-Moro, A Gröbner representation for linear codes, in Adv. Coding Theory Crypt., World Scientific, 2007, 17-32. |
[6] |
M. Borges-Quintana, M. A. Borges-Trenard and E. Martínez-Moro, On a Gröbner bases structure associated to linear codes, J. Discrete Math. Sci. Crypt., 10 (2007), 151-191.doi: 10.1080/09720529.2007.10698114. |
[7] |
M. Borges-Quintana, M. A. Borges-Trenard, P. Fitzpatrick and E. Martínez-Moro, On Gröbner basis and combinatorics for binary codes, Appl. Algebra Engin. Commun. Comp., 19 (2008), 393-411.doi: 10.1007/s00200-008-0080-2. |
[8] |
M. A. Borges-Trenard, M. Borges-Quintana and T. Mora, Computing Gröbner bases by FGLM techniques in a non-commutative setting, J. Symb. Comput., 30 (2000), 429-449.doi: 10.1006/jsco.1999.0415. |
[9] |
B. Buchberger, An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-dimensional Ideal (in German), Ph.D. thesis, Univ. Innsbruck, Austria, 1965. |
[10] |
B. Buchberger and H. M. Möller, The construction of multivariate polynomials with preassigned zeros, in EUROCAM'82, Marseille, 1982, 24-31. |
[11] |
J. C. Faugere, P. Gianni, D. Lazard and T. Mora, Efficient computation of zerodimensional Gröbner bases by change of ordering, J. Symb. Comput., 16 (1993), 329-344.doi: 10.1006/jsco.1993.1051. |
[12] |
The GAP Group, GAP-Groups, Algorithms, and Programming, available online at http://www.gap-system.org |
[13] |
S. Lundqvist, Complexity of comparing monomials and two improvements of the BM-algorithm, in Math. Methods Computer Science, Springer, Berlin, 2008, 105-125.doi: 10.1007/978-3-540-89994-5_9. |
[14] |
I. Márquez-Corbella and E. Martínez-Moro, Algebraic structure of the minimal support codewords set of some linear codes, Adv. Math. Commun., 5 (2011), 233-244.doi: 10.3934/amc.2011.5.233. |
[15] |
T. Mora, Solving Polynomial Equation Systems II: Macaulay's Paradigm and Gröbner Technology, Cambridge Univ. Press, 2005.doi: 10.1017/CBO9781107340954. |
[16] |
T. Mora, The FGLM problem and Möller's algorithm on zero-dimensional ideals, in Gröbner, Coding, and Cryptography, Springer, 2009, 379-384. |