November  2016, 10(4): 921-929. doi: 10.3934/amc.2016049

On the duality and the direction of polycyclic codes

1. 

Math Dept., King Abdulaziz University, Jeddah, Saudi Arabia

2. 

University of Scranton, Scranton, PA 18518, United States

3. 

University of Artois, Faculté J. Perrin, 62300 Lens, France

4. 

CNRS/LAGA, University of Paris 8, 93 526 Saint-Denis, France

Received  March 2015 Published  November 2016

Polycyclic codes are ideals in quotients of polynomial rings by a principal ideal. Special cases are cyclic and constacyclic codes. A MacWilliams relation between such a code and its annihilator ideal is derived. An infinite family of binary self-dual codes that are also formally self-dual in the classical sense is exhibited. We show that right polycyclic codes are left polycyclic codes with different (explicit) associate vectors and characterize the case when a code is both left and right polycyclic for the same associate polynomial. A similar study is led for sequential codes.
Citation: Adel Alahmadi, Steven Dougherty, André Leroy, Patrick Solé. On the duality and the direction of polycyclic codes. Advances in Mathematics of Communications, 2016, 10 (4) : 921-929. doi: 10.3934/amc.2016049
References:
[1]

K. Betsumiya and M. Harada, Binary optimal odd formally self-dual codes,, Des. Codes Crypt., 23 (2001), 11. doi: 10.1023/A:1011203416769. Google Scholar

[2]

J. Fields, P. Gaborit, V. Pless and W. C. Huffman, On the classification of extremal even formally self-dual codes of lengths $20$ and $22$,, Discrete Appl. Math., 111 (2001), 75. doi: 10.1016/S0166-218X(00)00345-0. Google Scholar

[3]

M. Grassl, Bounds on the minimum distance of linear codes,, available online at , (). Google Scholar

[4]

W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes,, Cambridge Univ. Press, (2003). doi: 10.1017/CBO9780511807077. Google Scholar

[5]

T. Kasami, Optimum shortened cyclic codes for burst-error correction,, IEEE Trans. Inform. Theory, 9 (1963), 105. Google Scholar

[6]

J.-L. Kim and V. Pless, A note on formally self-dual even codes of length divisible by 8,, Finite Fields Appl., 13 (2007), 224. doi: 10.1016/j.ffa.2005.09.006. Google Scholar

[7]

S. R. Lopez-Permouth, B. R. Parra-Avila and S. Szabo, Dual generalizations of the concept of cyclicity of codes,, Adv. Math. Commun., 3 (2009), 227. doi: 10.3934/amc.2009.3.227. Google Scholar

[8]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,, North-Holland, (1977). Google Scholar

[9]

M. Matsuoka, $\theta$-polycyclic codes and $\theta$-sequential codes over finite fields,, Int. J. Algebra, 5 (2011), 65. Google Scholar

[10]

W. W. Peterson and E. J. Weldon, Error Correcting Codes,, MIT Press, (1972). Google Scholar

[11]

E. M. Rains and N. J. A. Sloane, Self-dual codes,, in Handbook of Coding Theory, (1998). Google Scholar

[12]

J. Wood, Duality for modules over finite rings and applications to coding theory,, Amer. J. Math., 121 (1999), 555. Google Scholar

show all references

References:
[1]

K. Betsumiya and M. Harada, Binary optimal odd formally self-dual codes,, Des. Codes Crypt., 23 (2001), 11. doi: 10.1023/A:1011203416769. Google Scholar

[2]

J. Fields, P. Gaborit, V. Pless and W. C. Huffman, On the classification of extremal even formally self-dual codes of lengths $20$ and $22$,, Discrete Appl. Math., 111 (2001), 75. doi: 10.1016/S0166-218X(00)00345-0. Google Scholar

[3]

M. Grassl, Bounds on the minimum distance of linear codes,, available online at , (). Google Scholar

[4]

W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes,, Cambridge Univ. Press, (2003). doi: 10.1017/CBO9780511807077. Google Scholar

[5]

T. Kasami, Optimum shortened cyclic codes for burst-error correction,, IEEE Trans. Inform. Theory, 9 (1963), 105. Google Scholar

[6]

J.-L. Kim and V. Pless, A note on formally self-dual even codes of length divisible by 8,, Finite Fields Appl., 13 (2007), 224. doi: 10.1016/j.ffa.2005.09.006. Google Scholar

[7]

S. R. Lopez-Permouth, B. R. Parra-Avila and S. Szabo, Dual generalizations of the concept of cyclicity of codes,, Adv. Math. Commun., 3 (2009), 227. doi: 10.3934/amc.2009.3.227. Google Scholar

[8]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,, North-Holland, (1977). Google Scholar

[9]

M. Matsuoka, $\theta$-polycyclic codes and $\theta$-sequential codes over finite fields,, Int. J. Algebra, 5 (2011), 65. Google Scholar

[10]

W. W. Peterson and E. J. Weldon, Error Correcting Codes,, MIT Press, (1972). Google Scholar

[11]

E. M. Rains and N. J. A. Sloane, Self-dual codes,, in Handbook of Coding Theory, (1998). Google Scholar

[12]

J. Wood, Duality for modules over finite rings and applications to coding theory,, Amer. J. Math., 121 (1999), 555. Google Scholar

[1]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[2]

Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311

[3]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[4]

Somphong Jitman, San Ling, Ekkasit Sangwisut. On self-dual cyclic codes of length $p^a$ over $GR(p^2,s)$. Advances in Mathematics of Communications, 2016, 10 (2) : 255-273. doi: 10.3934/amc.2016004

[5]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[6]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[7]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[8]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[9]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

[10]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[11]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[12]

Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415

[13]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[14]

Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219

[15]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[16]

Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035

[17]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

[18]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[19]

Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040

[20]

Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

[Back to Top]