Citation: |
[1] |
K. Betsumiya and M. Harada, Binary optimal odd formally self-dual codes, Des. Codes Crypt., 23 (2001), 11-22.doi: 10.1023/A:1011203416769. |
[2] |
J. Fields, P. Gaborit, V. Pless and W. C. Huffman, On the classification of extremal even formally self-dual codes of lengths $20$ and $22$, Discrete Appl. Math., 111 (2001), 75-86.doi: 10.1016/S0166-218X(00)00345-0. |
[3] |
M. Grassl, Bounds on the minimum distance of linear codes, available online at http://www.codetables.de |
[4] |
W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes, Cambridge Univ. Press, 2003.doi: 10.1017/CBO9780511807077. |
[5] |
T. Kasami, Optimum shortened cyclic codes for burst-error correction, IEEE Trans. Inform. Theory, 9 (1963), 105-109. |
[6] |
J.-L. Kim and V. Pless, A note on formally self-dual even codes of length divisible by 8, Finite Fields Appl., 13 (2007), 224-229.doi: 10.1016/j.ffa.2005.09.006. |
[7] |
S. R. Lopez-Permouth, B. R. Parra-Avila and S. Szabo, Dual generalizations of the concept of cyclicity of codes, Adv. Math. Commun., 3 (2009), 227-234.doi: 10.3934/amc.2009.3.227. |
[8] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977. |
[9] |
M. Matsuoka, $\theta$-polycyclic codes and $\theta$-sequential codes over finite fields, Int. J. Algebra, 5 (2011), 65-70. |
[10] |
W. W. Peterson and E. J. Weldon, Error Correcting Codes, MIT Press, 1972. |
[11] |
E. M. Rains and N. J. A. Sloane, Self-dual codes, in Handbook of Coding Theory, Elsevier, Amsterdam, 1998. |
[12] |
J. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math., 121 (1999), 555-575. |