February  2017, 11(1): 1-65. doi: 10.3934/amc.2017001

Recursive descriptions of polar codes

School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69978 Israel

Received  February 2015 Revised  June 2016 Published  February 2017

Polar codes are recursive general concatenated codes. This property motivates a recursive formalization of the known decoding algorithms: Successive Cancellation, Successive Cancellation with Lists and Belief Propagation. Using such description allows an easy development of these algorithms for arbitrary polarizing kernels. Hardware architectures for these decoding algorithms are also described in a recursive way, both for Arıkan's standard polar codes and for arbitrary polarizing kernels.

Citation: Noam Presman, Simon Litsyn. Recursive descriptions of polar codes. Advances in Mathematics of Communications, 2017, 11 (1) : 1-65. doi: 10.3934/amc.2017001
References:
[1]

E. Arıkan, A performance comparison of polar codes and Reed-Muller codes, IEEE Commun. Lett., 12 (2008), 447-449. Google Scholar

[2]

E. Arıkan, Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels, IEEE Trans. Inf. Theory, 55 (2009), 3051-3073. doi: 10.1109/TIT.2009.2021379. Google Scholar

[3]

E. Arıkan, Systematic polar coding, IEEE Commun. Lett., 15 (2011), 860-862. Google Scholar

[4]

E. Arıkan and E. Telatar, On the rate of channel polarization, in 2009 IEEE Int. Symp. Inf. Theory (ISIT), 1493-1495.Google Scholar

[5]

A. Balatsoukas-StimmingM. B. Parizi and A. Burg, LLR-based successive cancellation list decoding of polar codes, IEEE Trans. Signal Proc., 63 (2015), 5165-5179. doi: 10.1109/TSP.2015.2439211. Google Scholar

[6]

A. Balatsoukas-Stimming, M. B. Parizi and A. Burg, On metric sorting for successive cancellation list decoding of polar codes, in 2015 IEEE Int. Symp. Circ. Syst. (ISCAS), 1993-1996. doi: 10.1109/ISCAS.2015.7169066. Google Scholar

[7]

A. Balatsoukas-StimmingA. J. RaymondW. J. Gross and A. Burg, Hardware architecture for list successive cancellation decoding of polar codes, IEEE Trans. Circ. Syst. Ⅱ Express Briefs, 61 (2014), 609-613. doi: 10.1109/TCSII.2014.2327336. Google Scholar

[8]

G. Berhault, C. Leroux, C. Jego and D. Dallet, Partial sums computation in polar codes decoding, preprint, arXiv: 1310.1712 doi: 10.1109/ISCAS.2015.7168761. Google Scholar

[9]

E. Blokh and V. Zyabolov, Coding of generalized concatenated codes, Probl. Peredachi Inform., 10 (1974), 45-50. Google Scholar

[10]

G. Bonik, S. Goreinov and N. Zamarashkin, A variant of list plus CRC concatenated polar code, preprint, arXiv: 1207.4661Google Scholar

[11]

T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, The MIT Press, 2001. Google Scholar

[12]

I. Dumer, Concatenated codes and their multilevel generalizations, in Handbook of Coding Theory, Elsevier, The Netherlands, 1998. Google Scholar

[13]

I. Dumer, Soft-decision decoding of Reed-Muller codes: a simplified algorithm, IEEE Trans. Inf. Theory, 52 (2006), 954-963. doi: 10.1109/TIT.2005.864425. Google Scholar

[14]

I. Dumer and K. Shabunov, Soft-decision decoding of Reed-Muller codes: recursive lists, IEEE Trans. Inf. Theory, 52 (2006), 1260-1266. doi: 10.1109/TIT.2005.864443. Google Scholar

[15]

Y. Fan and C. Y. Tsui, An efficient partial-sum network architecture for semi-parallel polar codes decoder implementation, IEEE Trans. Signal Proc., 62 (2014), 3165-3179. doi: 10.1109/TSP.2014.2319773. Google Scholar

[16]

G. D. Forney, Concatenated Codes, MIT Press, Cambridge, 1966. Google Scholar

[17]

G. D. Forney, Codes on graphs: normal realizations, IEEE Trans. Inf. Theory, 47 (2001), 520-548. doi: 10.1109/18.910573. Google Scholar

[18]

N. Hussami, S. Korada and R. Urbanke, Performance of polar codes for channel and source coding, in 2009 IEEE Int. Symp. Inf. Theory (ISIT), 1488-1492. doi: 10.1109/ISIT.2009.5205860. Google Scholar

[19]

S. B. Korada, Polar Codes for Channel and Source Coding, Ph. D theis, EPFL, 2009.Google Scholar

[20]

S. B. KoradaE. Sasoglu and R. Urbanke, Polar codes: characterization of exponent, bounds, and constructions, IEEE Trans. Inf. Theory, 56 (2010), 6253-6264. doi: 10.1109/TIT.2010.2080990. Google Scholar

[21]

C. Leroux, I. Tal, A. Vardy and W. J. Gross, Hardware architectures for successive cancellation decoding of polar codes, preprint, arXiv: 1011.2919 doi: 10.1109/ICASSP.2011.5946819. Google Scholar

[22]

C. LerouxA. RaymondG. SarkisI. TalA. Vardy and W. Gross, Hardware implementation of successive-cancellation decoders for polar codes, J. Signal Proc. Syst., 69 (2012), 305-315. doi: 10.1007/s11265-012-0685-3. Google Scholar

[23]

C. LerouxA. RaymondG. Sarkis and W. Gross, A semi-parallel successive-cancellation decoder for polar codes, IEEE Trans. Signal Proc., 61 (2013), 289-299. doi: 10.1109/TSP.2012.2223693. Google Scholar

[24]

B. LiH. Shen and D. Tse, An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check, IEEE Commun. Lett., 16 (2012), 2044-2047. doi: 10.1109/LCOMM.2012.111612.121898. Google Scholar

[25]

J. Lin, C. Xiong and Z. Yan, A reduced latency list decoding algorithm for polar codes, in 2014 IEEE Workshop Signal Proc. Syst. (SiPS), 1-6. doi: 10.1109/SiPS.2014.6986062. Google Scholar

[26]

A. Mishra, A. Raymond, L. Amaru, G. Sarkis, C. Leroux, P. Meinerzhagen, A. Burg and W. Gross, A successive cancellation decoder ASIC for a 1024-bit polar code in 180nm CMOS, in 2012 IEEE Asian Solid State Circ. Conf. (A-SSCC), 205-208. doi: 10.1109/IPEC.2012.6522661. Google Scholar

[27]

R. Mori and T. Tanaka, Performance and construction of polar codes on symmetric binaryinput memoryless channels, in 2009 IEEE Int. Symp. Inf. Theory (ISIT), 1496-1500. doi: 10.1109/ISIT.2009.5205857. Google Scholar

[28]

R. Mori and T. Tanaka, Channel polarization on q-ary discrete memoryless channels by arbitrary kernels, in 2010 IEEE Int. Symp. Inf. Theory (ISIT), 894-898. doi: 10.1109/ISIT.2010.5513568. Google Scholar

[29]

R. Mori and T. Tanaka, Non-binary polar codes using Reed-Solomon codes and algebraic geometry codes, in 2010 IEEE Inf. Theory Workshop (ITW), 1-5. doi: 10.1109/CIG.2010.5592755. Google Scholar

[30]

A. Pamuk, An FPGA implementation architecture for decoding of polar codes, in 2011 Int. Symp. Wirel. Commun. Syst. (ISWCS), 437-441. doi: 10.1109/ISWCS.2011.6125398. Google Scholar

[31]

A. Pamuk and E. Arıkan, A two phase successive cancellation decoder architecture for polar codes, in 2013 IEEE Int. Symp. on Inf. Theory Proc. (ISIT), 957-961. doi: 10.1109/ISIT.2013.6620368. Google Scholar

[32]

Y. S. Park, Energy-Efficient Decoders of Near-Capacity Channel Codes, Ph. D thesis, Univ. Michigan, 2014.Google Scholar

[33]

Y. S. Park, Y. Tao, S. Sun and Z. Zhang, A 4. 68Gb/s belief propagation polar decoder with bit-splitting register file, in 2014 Symp. VLSI Circ. Digest Techn. Papers, 1-2.Google Scholar

[34]

N. Presman, O. Shapira and S. Litsyn, Binary polar code kernels from code decompositions, preprint, arXiv: 1101.0764 doi: 10.1109/TIT.2015.2409257. Google Scholar

[35]

N. Presman, O. Shapira and S. Litsyn, Polar codes with mixed-kernels, preprint, arXiv: 1107.0478 doi: 10.1109/ISIT.2011.6034223. Google Scholar

[36]

N. PresmanO. Shapira and S. Litsyn, Mixed-kernels constructions of polar codes, IEEE J. Selected Areas Commun., 34 (2016), 239-253. doi: 10.1109/JSAC.2015.2504278. Google Scholar

[37]

N. PresmanO. ShapiraS. LitsynT. Etzion and A. Vardy, Binary polarization kernels from code decompositions, IEEE Trans. Inf. Theory, 61 (2015), 2227-2239. doi: 10.1109/TIT.2015.2409257. Google Scholar

[38]

A. Raymond and W. Gross, A scalable successive-cancellation decoder for polar codes, IEEE Trans. Signal Proc., 62 (2014), 5339-5347. doi: 10.1109/TSP.2014.2347262. Google Scholar

[39]

G. SarkisP. GiardA. VardyC. Thibeault and W. Gross, Fast polar decoders: algorithm and implementation, IEEE J. Sel. Areas Commun., 32 (2014), 946-957. doi: 10.1109/JSAC.2014.140514. Google Scholar

[40]

G. Sarkis, P. Giard, A. Vardy, C. Thibeault and W. Gross, Increasing the speed of polar list decoders, in 2014 IEEE Workshop Signal Proc. Syst. (SiPS), 1-6. doi: 10.1109/SiPS.2014.6986089. Google Scholar

[41]

E. SharonS. Litsyn and J. Goldberger, Efficient serial message-passing schedules for LDPC decoding, IEEE Trans. Inf. Theory, 53 (2007), 4076-4091. doi: 10.1109/TIT.2007.907507. Google Scholar

[42]

I. Tal and A. Vardy, List decoding of polar codes, in 2011 IEEE Int. Symp. Inf. Theory (ISIT), 1-5. doi: 10.1109/TIT.2015.2410251. Google Scholar

[43]

I. Tal and A. Vardy, List decoding of polar codes, IEEE Trans. Inf. Theory, 61 (2015), 2213-2226. doi: 10.1109/TIT.2015.2410251. Google Scholar

[44]

P. Trifonov, Efficient design and decoding of polar codes, IEEE Trans. Commun., 60 (2012), 3221-3227. doi: 10.1109/TCOMM.2012.081512.110872. Google Scholar

[45]

B. Yuan and K. Parhi, Architecture optimizations for BP polar decoders, in 2013 IEEE Int. Conf. Acoust. Speech Signal Proc. (ICASSP), 2654-2658. doi: 10.1109/ICASSP.2013.6638137. Google Scholar

[46]

B. Yuan and K. Parhi, Early stopping criteria for energy-efficient low-latency beliefpropagation polar code decoders, IEEE Trans. Signal Proc., 62 (2014), 6496-6506. doi: 10.1109/TSP.2014.2366712. Google Scholar

[47]

V. Zinoviev, Generalized concatenated codes, Probl. Peredachi Inform., 12 (1976), 5-15. Google Scholar

show all references

References:
[1]

E. Arıkan, A performance comparison of polar codes and Reed-Muller codes, IEEE Commun. Lett., 12 (2008), 447-449. Google Scholar

[2]

E. Arıkan, Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels, IEEE Trans. Inf. Theory, 55 (2009), 3051-3073. doi: 10.1109/TIT.2009.2021379. Google Scholar

[3]

E. Arıkan, Systematic polar coding, IEEE Commun. Lett., 15 (2011), 860-862. Google Scholar

[4]

E. Arıkan and E. Telatar, On the rate of channel polarization, in 2009 IEEE Int. Symp. Inf. Theory (ISIT), 1493-1495.Google Scholar

[5]

A. Balatsoukas-StimmingM. B. Parizi and A. Burg, LLR-based successive cancellation list decoding of polar codes, IEEE Trans. Signal Proc., 63 (2015), 5165-5179. doi: 10.1109/TSP.2015.2439211. Google Scholar

[6]

A. Balatsoukas-Stimming, M. B. Parizi and A. Burg, On metric sorting for successive cancellation list decoding of polar codes, in 2015 IEEE Int. Symp. Circ. Syst. (ISCAS), 1993-1996. doi: 10.1109/ISCAS.2015.7169066. Google Scholar

[7]

A. Balatsoukas-StimmingA. J. RaymondW. J. Gross and A. Burg, Hardware architecture for list successive cancellation decoding of polar codes, IEEE Trans. Circ. Syst. Ⅱ Express Briefs, 61 (2014), 609-613. doi: 10.1109/TCSII.2014.2327336. Google Scholar

[8]

G. Berhault, C. Leroux, C. Jego and D. Dallet, Partial sums computation in polar codes decoding, preprint, arXiv: 1310.1712 doi: 10.1109/ISCAS.2015.7168761. Google Scholar

[9]

E. Blokh and V. Zyabolov, Coding of generalized concatenated codes, Probl. Peredachi Inform., 10 (1974), 45-50. Google Scholar

[10]

G. Bonik, S. Goreinov and N. Zamarashkin, A variant of list plus CRC concatenated polar code, preprint, arXiv: 1207.4661Google Scholar

[11]

T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, The MIT Press, 2001. Google Scholar

[12]

I. Dumer, Concatenated codes and their multilevel generalizations, in Handbook of Coding Theory, Elsevier, The Netherlands, 1998. Google Scholar

[13]

I. Dumer, Soft-decision decoding of Reed-Muller codes: a simplified algorithm, IEEE Trans. Inf. Theory, 52 (2006), 954-963. doi: 10.1109/TIT.2005.864425. Google Scholar

[14]

I. Dumer and K. Shabunov, Soft-decision decoding of Reed-Muller codes: recursive lists, IEEE Trans. Inf. Theory, 52 (2006), 1260-1266. doi: 10.1109/TIT.2005.864443. Google Scholar

[15]

Y. Fan and C. Y. Tsui, An efficient partial-sum network architecture for semi-parallel polar codes decoder implementation, IEEE Trans. Signal Proc., 62 (2014), 3165-3179. doi: 10.1109/TSP.2014.2319773. Google Scholar

[16]

G. D. Forney, Concatenated Codes, MIT Press, Cambridge, 1966. Google Scholar

[17]

G. D. Forney, Codes on graphs: normal realizations, IEEE Trans. Inf. Theory, 47 (2001), 520-548. doi: 10.1109/18.910573. Google Scholar

[18]

N. Hussami, S. Korada and R. Urbanke, Performance of polar codes for channel and source coding, in 2009 IEEE Int. Symp. Inf. Theory (ISIT), 1488-1492. doi: 10.1109/ISIT.2009.5205860. Google Scholar

[19]

S. B. Korada, Polar Codes for Channel and Source Coding, Ph. D theis, EPFL, 2009.Google Scholar

[20]

S. B. KoradaE. Sasoglu and R. Urbanke, Polar codes: characterization of exponent, bounds, and constructions, IEEE Trans. Inf. Theory, 56 (2010), 6253-6264. doi: 10.1109/TIT.2010.2080990. Google Scholar

[21]

C. Leroux, I. Tal, A. Vardy and W. J. Gross, Hardware architectures for successive cancellation decoding of polar codes, preprint, arXiv: 1011.2919 doi: 10.1109/ICASSP.2011.5946819. Google Scholar

[22]

C. LerouxA. RaymondG. SarkisI. TalA. Vardy and W. Gross, Hardware implementation of successive-cancellation decoders for polar codes, J. Signal Proc. Syst., 69 (2012), 305-315. doi: 10.1007/s11265-012-0685-3. Google Scholar

[23]

C. LerouxA. RaymondG. Sarkis and W. Gross, A semi-parallel successive-cancellation decoder for polar codes, IEEE Trans. Signal Proc., 61 (2013), 289-299. doi: 10.1109/TSP.2012.2223693. Google Scholar

[24]

B. LiH. Shen and D. Tse, An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check, IEEE Commun. Lett., 16 (2012), 2044-2047. doi: 10.1109/LCOMM.2012.111612.121898. Google Scholar

[25]

J. Lin, C. Xiong and Z. Yan, A reduced latency list decoding algorithm for polar codes, in 2014 IEEE Workshop Signal Proc. Syst. (SiPS), 1-6. doi: 10.1109/SiPS.2014.6986062. Google Scholar

[26]

A. Mishra, A. Raymond, L. Amaru, G. Sarkis, C. Leroux, P. Meinerzhagen, A. Burg and W. Gross, A successive cancellation decoder ASIC for a 1024-bit polar code in 180nm CMOS, in 2012 IEEE Asian Solid State Circ. Conf. (A-SSCC), 205-208. doi: 10.1109/IPEC.2012.6522661. Google Scholar

[27]

R. Mori and T. Tanaka, Performance and construction of polar codes on symmetric binaryinput memoryless channels, in 2009 IEEE Int. Symp. Inf. Theory (ISIT), 1496-1500. doi: 10.1109/ISIT.2009.5205857. Google Scholar

[28]

R. Mori and T. Tanaka, Channel polarization on q-ary discrete memoryless channels by arbitrary kernels, in 2010 IEEE Int. Symp. Inf. Theory (ISIT), 894-898. doi: 10.1109/ISIT.2010.5513568. Google Scholar

[29]

R. Mori and T. Tanaka, Non-binary polar codes using Reed-Solomon codes and algebraic geometry codes, in 2010 IEEE Inf. Theory Workshop (ITW), 1-5. doi: 10.1109/CIG.2010.5592755. Google Scholar

[30]

A. Pamuk, An FPGA implementation architecture for decoding of polar codes, in 2011 Int. Symp. Wirel. Commun. Syst. (ISWCS), 437-441. doi: 10.1109/ISWCS.2011.6125398. Google Scholar

[31]

A. Pamuk and E. Arıkan, A two phase successive cancellation decoder architecture for polar codes, in 2013 IEEE Int. Symp. on Inf. Theory Proc. (ISIT), 957-961. doi: 10.1109/ISIT.2013.6620368. Google Scholar

[32]

Y. S. Park, Energy-Efficient Decoders of Near-Capacity Channel Codes, Ph. D thesis, Univ. Michigan, 2014.Google Scholar

[33]

Y. S. Park, Y. Tao, S. Sun and Z. Zhang, A 4. 68Gb/s belief propagation polar decoder with bit-splitting register file, in 2014 Symp. VLSI Circ. Digest Techn. Papers, 1-2.Google Scholar

[34]

N. Presman, O. Shapira and S. Litsyn, Binary polar code kernels from code decompositions, preprint, arXiv: 1101.0764 doi: 10.1109/TIT.2015.2409257. Google Scholar

[35]

N. Presman, O. Shapira and S. Litsyn, Polar codes with mixed-kernels, preprint, arXiv: 1107.0478 doi: 10.1109/ISIT.2011.6034223. Google Scholar

[36]

N. PresmanO. Shapira and S. Litsyn, Mixed-kernels constructions of polar codes, IEEE J. Selected Areas Commun., 34 (2016), 239-253. doi: 10.1109/JSAC.2015.2504278. Google Scholar

[37]

N. PresmanO. ShapiraS. LitsynT. Etzion and A. Vardy, Binary polarization kernels from code decompositions, IEEE Trans. Inf. Theory, 61 (2015), 2227-2239. doi: 10.1109/TIT.2015.2409257. Google Scholar

[38]

A. Raymond and W. Gross, A scalable successive-cancellation decoder for polar codes, IEEE Trans. Signal Proc., 62 (2014), 5339-5347. doi: 10.1109/TSP.2014.2347262. Google Scholar

[39]

G. SarkisP. GiardA. VardyC. Thibeault and W. Gross, Fast polar decoders: algorithm and implementation, IEEE J. Sel. Areas Commun., 32 (2014), 946-957. doi: 10.1109/JSAC.2014.140514. Google Scholar

[40]

G. Sarkis, P. Giard, A. Vardy, C. Thibeault and W. Gross, Increasing the speed of polar list decoders, in 2014 IEEE Workshop Signal Proc. Syst. (SiPS), 1-6. doi: 10.1109/SiPS.2014.6986089. Google Scholar

[41]

E. SharonS. Litsyn and J. Goldberger, Efficient serial message-passing schedules for LDPC decoding, IEEE Trans. Inf. Theory, 53 (2007), 4076-4091. doi: 10.1109/TIT.2007.907507. Google Scholar

[42]

I. Tal and A. Vardy, List decoding of polar codes, in 2011 IEEE Int. Symp. Inf. Theory (ISIT), 1-5. doi: 10.1109/TIT.2015.2410251. Google Scholar

[43]

I. Tal and A. Vardy, List decoding of polar codes, IEEE Trans. Inf. Theory, 61 (2015), 2213-2226. doi: 10.1109/TIT.2015.2410251. Google Scholar

[44]

P. Trifonov, Efficient design and decoding of polar codes, IEEE Trans. Commun., 60 (2012), 3221-3227. doi: 10.1109/TCOMM.2012.081512.110872. Google Scholar

[45]

B. Yuan and K. Parhi, Architecture optimizations for BP polar decoders, in 2013 IEEE Int. Conf. Acoust. Speech Signal Proc. (ICASSP), 2654-2658. doi: 10.1109/ICASSP.2013.6638137. Google Scholar

[46]

B. Yuan and K. Parhi, Early stopping criteria for energy-efficient low-latency beliefpropagation polar code decoders, IEEE Trans. Signal Proc., 62 (2014), 6496-6506. doi: 10.1109/TSP.2014.2366712. Google Scholar

[47]

V. Zinoviev, Generalized concatenated codes, Probl. Peredachi Inform., 12 (1976), 5-15. Google Scholar

Figure 1.  A GCC representation of a polar code of length $\ell^n$ symbols constructed by a homogenous kernel according to Definition 1
Figure 2.  Example 1's GCC representation (Arıkan's construction)
Figure 3.  Representation of a polar code with kernel of $\ell = 2$ dimensions as a layered factor graph
Figure 4.  Representation of a polar code with kernel of $\ell = 2$ dimensions as a layered factor graph (detailed version of Figure 3-recursion unfolded)
Figure 5.  Normal factor graph representation of the $g(\cdot)$ block from Figures 3 and 4 for Arikan's $(u+v, v)$ construction
Figure 6.  A GCC representation of the length $N=4^n$ bits mixed-kernels polar code $g^{(n)}(\cdot)$ described in Example 3
Figure 7.  Decoding tree for $(u+v, v)$ polar code illustrating the decision space of the SC and SCL algorithms
Figure 8.  Representation of SC as a sequential walk on a decoding tree
Figure 9.  SCL ($L=4$) algorithm example of $(u+v, v)$ with $N=8$ bits (see Figure 7) illustrated on the right a decoding tree on the outer-codes of the structure ($\mathcal{C}_{0}, \mathcal{C}_{1}$). The left decoding tree expands each edge of the right tree into decoding-paths on the outer-codes of $\mathcal{C}_{0}$ and $\mathcal{C}_{1}$. The labels of the edges are the values of the outer-codes.
Figure 10.  Normal factor graphs representations of polar codes kernels
Figure 11.  Messages of BP algorithm
Figure 12.  Normal factor graph representation for the first kernel of Example 4. This kernel is constructed by gluing inputs $u_{1}, u_2$ of the mapping defined by the generating matrix $\bf G$
Figure 13.  $(u+v, v)$ polar code PE block
Figure 14.  Blocks of the $(u+v, v)$ polar code decoders of length $N$ bits
Figure 15.  Block diagram for the SC pipeline decoder
Figure 16.  Block diagram for the SC line decoder
Figure 17.  Block diagram for the limited parallelism line decoder
Figure 18.  BP line decoder components definitions
Figure 19.  Block diagram for the BP line decoder. Details of figure appear in Figures 20, 21 and 22 corresponding to sub-figures A, B and C respectively.
Figure 20.  Block diagram for the BP line decoder (Figure 19) -zoom-in: Sub-figure A
Figure 21.  Block diagram for the BP line decoder (Figure 19) -zoom-in: Sub-figure B
Figure 22.  Block diagram for the BP line decoder (Figure 19) -zoom-in: Sub-figure C
Figure 23.  Block definitions of SC line decoder for polar code of length $N$ based on a linear $\ell$ dimensions kernel with alphabet $F$
Table 1.  Routing tables for OP-MUX and OP-DEMUX in Figure 18
$c^{(opMux)}, c^{(opDeMux)}$ $c^{(BPPE)}$ $\mu^{(in)}_0$ $\mu^{(in)}_1$ $\mu^{(out)}$ Equation
$0$ $0$ $\mu^{(in)}_{x_1}$ $\mu^{(in)}_{u_1}$ $\mu_{e_1\rightarrow a_0}$ (45)
$1$ $1$ $\mu^{(in)}_{x_0}$ $\mu^{(in)}_{u_0}$ $\mu_{a_0 \rightarrow e_1}$ (46)
$2$ $1$ $\mu^{(in)}_{x_0}$ $\mu_{e_1\rightarrow a_0}$ $\mu_{u_0}^{(out)}$ (47)
$3$ $0$ $\mu^{(in)}_{x_1}$ $\mu_{a_0\rightarrow e_1}$ $\mu_{u_1}^{(out)}$ (48)
$4$ $1$ $\mu^{(in)}_{u_0}$ $\mu_{e_1\rightarrow a_0}$ $\mu_{x_0}^{(out)}$ (49)
$5$ $0$ $\mu^{(in)}_{u_1}$ $\mu_{a_0\rightarrow e_1}$ $\mu_{x_1}^{(out)}$ (50)
$6$ $0$ or $1$ $\mu^{(ext, in)}_0$ $\mu^{(ext, in)}_1$ $\mu^{(ext, out)}$ (80)
$c^{(opMux)}, c^{(opDeMux)}$ $c^{(BPPE)}$ $\mu^{(in)}_0$ $\mu^{(in)}_1$ $\mu^{(out)}$ Equation
$0$ $0$ $\mu^{(in)}_{x_1}$ $\mu^{(in)}_{u_1}$ $\mu_{e_1\rightarrow a_0}$ (45)
$1$ $1$ $\mu^{(in)}_{x_0}$ $\mu^{(in)}_{u_0}$ $\mu_{a_0 \rightarrow e_1}$ (46)
$2$ $1$ $\mu^{(in)}_{x_0}$ $\mu_{e_1\rightarrow a_0}$ $\mu_{u_0}^{(out)}$ (47)
$3$ $0$ $\mu^{(in)}_{x_1}$ $\mu_{a_0\rightarrow e_1}$ $\mu_{u_1}^{(out)}$ (48)
$4$ $1$ $\mu^{(in)}_{u_0}$ $\mu_{e_1\rightarrow a_0}$ $\mu_{x_0}^{(out)}$ (49)
$5$ $0$ $\mu^{(in)}_{u_1}$ $\mu_{a_0\rightarrow e_1}$ $\mu_{x_1}^{(out)}$ (50)
$6$ $0$ or $1$ $\mu^{(ext, in)}_0$ $\mu^{(ext, in)}_1$ $\mu^{(ext, out)}$ (80)
[1]

Min Ye, Alexander Barg. Polar codes for distributed hierarchical source coding. Advances in Mathematics of Communications, 2015, 9 (1) : 87-103. doi: 10.3934/amc.2015.9.87

[2]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[3]

Miguel Mendes. A note on the coding of orbits in certain discontinuous maps. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 369-382. doi: 10.3934/dcds.2010.27.369

[4]

Keisuke Minami, Takahiro Matsuda, Tetsuya Takine, Taku Noguchi. Asynchronous multiple source network coding for wireless broadcasting. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 577-592. doi: 10.3934/naco.2011.1.577

[5]

Carla Mascia, Giancarlo Rinaldo, Massimiliano Sala. Hilbert quasi-polynomial for order domains and application to coding theory. Advances in Mathematics of Communications, 2018, 12 (2) : 287-301. doi: 10.3934/amc.2018018

[6]

T. Jäger. Neuronal coding of pacemaker neurons -- A random dynamical systems approach. Communications on Pure & Applied Analysis, 2011, 10 (3) : 995-1009. doi: 10.3934/cpaa.2011.10.995

[7]

Shinsuke Koyama, Lubomir Kostal. The effect of interspike interval statistics on the information gain under the rate coding hypothesis. Mathematical Biosciences & Engineering, 2014, 11 (1) : 63-80. doi: 10.3934/mbe.2014.11.63

[8]

Stefan Martignoli, Ruedi Stoop. Phase-locking and Arnold coding in prototypical network topologies. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 145-162. doi: 10.3934/dcdsb.2008.9.145

[9]

Giuseppe Bianchi, Lorenzo Bracciale, Keren Censor-Hillel, Andrea Lincoln, Muriel Médard. The one-out-of-k retrieval problem and linear network coding. Advances in Mathematics of Communications, 2016, 10 (1) : 95-112. doi: 10.3934/amc.2016.10.95

[10]

Vincent Astier, Thomas Unger. Galois extensions, positive involutions and an application to unitary space-time coding. Advances in Mathematics of Communications, 2019, 13 (3) : 513-516. doi: 10.3934/amc.2019032

[11]

Qian Guo, Thomas Johansson, Erik Mårtensson, Paul Stankovski Wagner. Some cryptanalytic and coding-theoretic applications of a soft stern algorithm. Advances in Mathematics of Communications, 2019, 13 (4) : 559-578. doi: 10.3934/amc.2019035

[12]

Georgy L. Alfimov, Pavel P. Kizin, Dmitry A. Zezyulin. Gap solitons for the repulsive Gross-Pitaevskii equation with periodic potential: Coding and method for computation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1207-1229. doi: 10.3934/dcdsb.2017059

[13]

Lassi Roininen, Markku S. Lehtinen. Perfect pulse-compression coding via ARMA algorithms and unimodular transfer functions. Inverse Problems & Imaging, 2013, 7 (2) : 649-661. doi: 10.3934/ipi.2013.7.649

[14]

Kyung Jae Kim, Jin Soo Park, Bong Dae Choi. Admission control scheme of extended rtPS algorithm for VoIP service in IEEE 802.16e with adaptive modulation and coding. Journal of Industrial & Management Optimization, 2010, 6 (3) : 641-660. doi: 10.3934/jimo.2010.6.641

[15]

Gokhan Calis, O. Ozan Koyluoglu. Architecture-aware coding for distributed storage: Repairable block failure resilient codes. Advances in Mathematics of Communications, 2018, 12 (3) : 465-503. doi: 10.3934/amc.2018028

[16]

Jonas Eriksson. A weight-based characterization of the set of correctable error patterns under list-of-2 decoding. Advances in Mathematics of Communications, 2007, 1 (3) : 331-356. doi: 10.3934/amc.2007.1.331

[17]

Easton Li Xu, Weiping Shang, Guangyue Han. Network encoding complexity: Exact values, bounds, and inequalities. Advances in Mathematics of Communications, 2017, 11 (3) : 567-594. doi: 10.3934/amc.2017044

[18]

Anton Petrunin. Correction to: Metric minimizing surfaces. Electronic Research Announcements, 2018, 25: 96-96. doi: 10.3934/era.2018.25.010

[19]

Kwankyu Lee. Decoding of differential AG codes. Advances in Mathematics of Communications, 2016, 10 (2) : 307-319. doi: 10.3934/amc.2016007

[20]

Elisa Gorla, Felice Manganiello, Joachim Rosenthal. An algebraic approach for decoding spread codes. Advances in Mathematics of Communications, 2012, 6 (4) : 443-466. doi: 10.3934/amc.2012.6.443

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (32)
  • HTML views (91)
  • Cited by (0)

Other articles
by authors

[Back to Top]