No. | Max. sub. | Deg. |
1 | $L_3(3){:}2$ | 1600 |
2 | $L_3(3){:}2$ | 1600 |
3 | $2.[2^8].5.4$ | 1755 |
4 | $L_2(25)$ | 2304 |
5 | $2^2.[2^8].S_3$ | 2925 |
6 | $A_6.2^2$ | 12480 |
7 | $A_6.2^2$ | 12480 |
8 | $5^2{:}4A_4$ | 14976 |
In this paper, we construct some designs and associated binary codes from a primitive permutation representation of degree 1755 of the sporadic simple Tits group $^2F_4 \left(2 \right)'$. In particular, we construct a binary code $[1755, 26,1024]_2$ on which $^2F_4 \left(2 \right)'$ acts irreducibly. This is the smallest non-trivial irreducible $GF(2)$-module for our group.
Citation: |
Table 1. Maximal subgroups of ${}^2F_4 \left(2 \right)^\prime$
No. | Max. sub. | Deg. |
1 | $L_3(3){:}2$ | 1600 |
2 | $L_3(3){:}2$ | 1600 |
3 | $2.[2^8].5.4$ | 1755 |
4 | $L_2(25)$ | 2304 |
5 | $2^2.[2^8].S_3$ | 2925 |
6 | $A_6.2^2$ | 12480 |
7 | $A_6.2^2$ | 12480 |
8 | $5^2{:}4A_4$ | 14976 |
Table 2. The stabilizers of codewords of C
Weight | Number of words | Structure of the stabilizer |
768 | $11700$ | $((((((4 \times 2) {:} 4) {:} 3) {:} 2) {:} 2){:}2){:}(2 \times 2)$ |
768 | $93600$ | $((((4 \times 2) {:} 4) {:}3) {:}2) {:} 2$ |
800 | $44928$ | $((5 {:} 4) \times (5 {:} 4)) {:} 2$ |
832 | $56160$ | $2 \times (((2 \times 2 \times 2 \times 2) {:} 5) {:} 4)$ |
832 | $280800$ | $2 \times ((4 \times 2 \times 2) {:} 4)$ |
832 | $69120$ | $13{:}4$ |
832 | $898560$ | $2\times (5 {:}4)$ |
832 | $1797120$ | $D_{20}$ |
864 | $24960$ | $(A_6. 2) {:} 2$ |
864 | $449280$ | $4 \times (5{:}4)$ |
864 | $748800$ | $2 \times S_4$ |
864 | $1123200$ | $(2 \times D_8){:}2$ |
864 | $4492800$ | $4 \times (5{:}4)$ |
864 | $4492800$ | $D_8$ |
864 | $5990400$ | $S_3$ |
864 | $5990400$ | $S_3$ |
864 | $8985600$ | $2 \times 2$ |
896 | $140400$ | $(4 \times 2 \times 2). (8 \times 2)$ |
896 | $280800$ | $((2 \times 2 \times Q_8) {:} 2) {:} 2$ |
896 | $2246400$ | $(4\times 2){:}2$ |
896 | $4492800$ | $2\times4$ |
896 | $4492800$ | $2\times4$ |
896 | $8985600$ | $2\times2$ |
896 | $8985600$ | $4$ |
928 | $1123200$ | $(4 \times4) {:}2$ |
960 | $187200$ | $((2 \times 2 \times 2). (2 \times 2 \times 2)) {:} 3$ |
1024 | $1755$ | $2.[2^9].5.4$ |
[1] |
Jr. E. F. Assmus and J. D. Key, Designs and their Codes, Cambridge Univ. Press, Cambridge, 1993.
doi: 10.1017/CBO9781316529836.![]() ![]() ![]() |
[2] |
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. Ⅰ. The user language, J. Symb. Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125.![]() ![]() ![]() |
[3] |
A. R. Calderbank and D. B. Wales, A global code invariant under the Higman-Sims group, Algebra J., 75 (1982), 233-260.
doi: 10.1016/0021-8693(82)90073-4.![]() ![]() ![]() |
[4] |
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford Univ. Press, Oxford, 1985.
![]() ![]() |
[5] |
The GAP Group, GAP -Groups, Algorithms, and Programming, Version 4.7.6, 2014, available at http://www.gap-system.org
![]() |
[6] |
W. H. Haemers, C. Parker, V. Pless and V. D. Tonchev, A design and a code invariant under the simple group Co3, J. Combin. Theory Ser. A, 62 (1993), 225-233.
doi: 10.1016/0097-3165(93)90045-A.![]() ![]() ![]() |
[7] |
W. C. Huffman, Codes and groups, in Handbook of Coding Theory, Elsevier, 1998,1345-1440.
![]() ![]() |
[8] |
C. Jansen, K. Lux, R. Parker and R Wilson, An Atlas of Brauer Characters, Oxford Sci. Publ. , Oxford, 1995.
![]() ![]() |
[9] |
J. D. Key and J. Moori, Designs, codes and graphs from the Janko groups J1 and J2, J. Combin. Math. Combin. Comput., 40 (2002), 143-159.
![]() ![]() |
[10] |
J. D. Key, J. Moori and B. G. Rodrigues, On some designs and codes from primitive representations of some finite simple groups, J. Combin. Math. Combin. Comput., 45 (2003), 3-19.
![]() ![]() |
[11] |
J. Moori, Finite groups, designs and codes, Information security, coding theory and related combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 29, IOS, Amsterdam, 2011, 202-230,
![]() ![]() |
[12] |
J. Moori and B. G. Rodrigues, A self-orthogonal doubly even code invariant under McL : 2, J. Combin. Theory Ser. A, 110 (2005), 53-69.
doi: 10.1016/j.jcta.2004.10.001.![]() ![]() ![]() |
[13] |
J. Moori and B. G. Rodrigues, Some designs and codes invariant under the simple group Co2, Algebra J., 316 (2007), 649-661.
doi: 10.1016/j.jalgebra.2007.02.004.![]() ![]() ![]() |
[14] |
J. Moori and B. G. Rodrigues, A self-orthogonal doubly-even code invariant under the McL, Ars Combin., 91 (2009), 321-332.
![]() ![]() |
[15] |
J. Moori and B. G. Rodrigues, On some designs and codes invariant under the Higman-Sims group, Util. Math., 86 (2011), 225-239.
![]() ![]() |
[16] |
B. G. Rodrigues, Codes of Designs and Graphs from Finite Simple Groups, Ph. D thesis, Univ. Natal, 2002.
![]() |
[17] |
J. Tits, Algebraic and abstract simple groups, Ann. Math., 80 (1964), 313-329.
doi: 10.2307/1970394.![]() ![]() ![]() |