-
Previous Article
Generalized Hamming weights of codes over the $\mathcal{GH}$ curve
- AMC Home
- This Issue
-
Next Article
DNA cyclic codes over rings
Cyclic codes over local Frobenius rings of order 16
1. | Department of Mathematics, University of Scranton, Scranton, PA 18518, USA |
2. | Department of Mathematics, Fatih University, Istanbul, 34500, Turkey |
3. | Department of Mathematics, University of Scranton, Scranton, PA 18518, USA |
We study cyclic codes over commutative local Frobenius rings of order 16 and give their binary images under a Gray map which is a generalization of the Gray maps on the rings of order 4. We prove that the binary images of cyclic codes are quasi-cyclic codes of index 4 and give examples of cyclic codes of various lengths constructed from these techniques including new optimal quasi-cyclic codes.
References:
[1] |
N. Aydin and T. Asamov, A database of $\mathbb Z_4$-codes, available at http://www.asamov.com/Z4Codes. |
[2] |
A. Bonnecaze and P. Udaya,
Cyclic codes and self-dual codes over $\mathbb{F}_2 + u\mathbb{F}_2$, Des. Codes Cryptogr., 42 (2007), 273-287.
doi: 10.1109/18.761278. |
[3] |
A. R. Calderbank and N. J. A. Sloane,
Modular and p-adic cyclic codes, Des. Codes Cryptpgr., 6 (1995), 21-35.
doi: 10.1007/BF01390768. |
[4] |
E. Z. Chen, A database of quasi-twisted codes, available at http://moodle.tec.hkr.se/~chen/research/codes. |
[5] |
H. Q. Dinh and S. Lopez-Permouth,
Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789. |
[6] |
S. T. Dougherty, S. Karadeniz and B. Yildiz,
Cyclic codes over Rk, Des. Codes Cryptogr., 63 (2012), 113-126.
doi: 10.1007/s10623-011-9539-4. |
[7] |
S. T. Dougherty, E. Salturk and S. Szabo,
Codes over local rings of order 16 and binary codes, Adv. math. Comm., 10 (), 379-391.
doi: 10.3934/amc.2016012. |
[8] |
S. T. Dougherty, E. Salturk and S. Szabo, On codes over local rings: generator matrices, generating characters and MacWilliams identities, submitted. |
[9] |
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, available at http://codetables.de. |
[10] |
A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé,
The $\mathbb Z_4$-linearity of Kerdoc, Preparata, Goethals and related code, IEEE Trans. Inform. Theory, 40 (1994), 301-319.
doi: 10.1109/18.312154. |
[11] |
T. Hurley,
Group rings and rings of matrices, Int. J. Pure Appl. Math., 3 (2006), 319-335.
|
[12] |
P. Kanwar and S. Lopez-Permouth,
Cyclic codes over the integers modulo pm, Finite Fields Appl., 3 (1997), 334-352.
doi: 10.1006/ffta.1997.0189. |
[13] |
E. Martinez-Moro and S. Szabo, On codes over local Frobenius non-chain rings of order 16, Contemp. Math. , to appear.
doi: 10.1090/conm/634/12702. |
[14] |
B. R. McDonald, Finite Rings with Identity, Dekker, New York, 1974. |
[15] |
V. Pless, P. Solé and Z. Qian,
Cyclic self-dual $\mathbb Z_4$-codes, Finite Fields Appl., 3 (1997), 48-69.
doi: 10.1006/ffta.1996.0172. |
[16] |
E. Prange, Cyclic Error-Correcting Codes in Two Symbols, Air Force Cambridge Research Center 1957. |
[17] |
J. Wolfmann,
Negacyclic and cyclic codes over $\mathbb Z_4$, IEEE Trans. Inform. Theory, 45 (1999), 2527-2532.
doi: 10.1109/18.796397. |
[18] |
B. Yildiz and S. Karadeniz,
Cyclic codes over $\mathbb{F}_2 + u\mathbb{F}_2 + v\mathbb{F}_2 + uv\mathbb{F}_2$, Des. Codes Cryptogr., 58 (2011), 221-234.
doi: 10.1007/s10623-010-9399-3. |
show all references
References:
[1] |
N. Aydin and T. Asamov, A database of $\mathbb Z_4$-codes, available at http://www.asamov.com/Z4Codes. |
[2] |
A. Bonnecaze and P. Udaya,
Cyclic codes and self-dual codes over $\mathbb{F}_2 + u\mathbb{F}_2$, Des. Codes Cryptogr., 42 (2007), 273-287.
doi: 10.1109/18.761278. |
[3] |
A. R. Calderbank and N. J. A. Sloane,
Modular and p-adic cyclic codes, Des. Codes Cryptpgr., 6 (1995), 21-35.
doi: 10.1007/BF01390768. |
[4] |
E. Z. Chen, A database of quasi-twisted codes, available at http://moodle.tec.hkr.se/~chen/research/codes. |
[5] |
H. Q. Dinh and S. Lopez-Permouth,
Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789. |
[6] |
S. T. Dougherty, S. Karadeniz and B. Yildiz,
Cyclic codes over Rk, Des. Codes Cryptogr., 63 (2012), 113-126.
doi: 10.1007/s10623-011-9539-4. |
[7] |
S. T. Dougherty, E. Salturk and S. Szabo,
Codes over local rings of order 16 and binary codes, Adv. math. Comm., 10 (), 379-391.
doi: 10.3934/amc.2016012. |
[8] |
S. T. Dougherty, E. Salturk and S. Szabo, On codes over local rings: generator matrices, generating characters and MacWilliams identities, submitted. |
[9] |
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, available at http://codetables.de. |
[10] |
A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé,
The $\mathbb Z_4$-linearity of Kerdoc, Preparata, Goethals and related code, IEEE Trans. Inform. Theory, 40 (1994), 301-319.
doi: 10.1109/18.312154. |
[11] |
T. Hurley,
Group rings and rings of matrices, Int. J. Pure Appl. Math., 3 (2006), 319-335.
|
[12] |
P. Kanwar and S. Lopez-Permouth,
Cyclic codes over the integers modulo pm, Finite Fields Appl., 3 (1997), 334-352.
doi: 10.1006/ffta.1997.0189. |
[13] |
E. Martinez-Moro and S. Szabo, On codes over local Frobenius non-chain rings of order 16, Contemp. Math. , to appear.
doi: 10.1090/conm/634/12702. |
[14] |
B. R. McDonald, Finite Rings with Identity, Dekker, New York, 1974. |
[15] |
V. Pless, P. Solé and Z. Qian,
Cyclic self-dual $\mathbb Z_4$-codes, Finite Fields Appl., 3 (1997), 48-69.
doi: 10.1006/ffta.1996.0172. |
[16] |
E. Prange, Cyclic Error-Correcting Codes in Two Symbols, Air Force Cambridge Research Center 1957. |
[17] |
J. Wolfmann,
Negacyclic and cyclic codes over $\mathbb Z_4$, IEEE Trans. Inform. Theory, 45 (1999), 2527-2532.
doi: 10.1109/18.796397. |
[18] |
B. Yildiz and S. Karadeniz,
Cyclic codes over $\mathbb{F}_2 + u\mathbb{F}_2 + v\mathbb{F}_2 + uv\mathbb{F}_2$, Des. Codes Cryptogr., 58 (2011), 221-234.
doi: 10.1007/s10623-010-9399-3. |
$n$ | $f\left(x\right) $ | $\phi \left({C}\right) $ |
3 | $\left(0, z_{4}, z_{4}\right) $ | $\left[12, 2, 8\right] _{2}^{\ast }$ |
3 | $\left(z_{7}, z_{2}, z_{8}\right) $ | $\left[12, 4, 6\right] _{2}^{\ast }$ |
3 | $\left(z_{1}, z_{8}, z_{6}\right) $ | $\left[12, 6, 4\right] _{2}^{\ast }$ |
3 | $\left(y_{7}, y_{5}, y_{2}\right) $ | $\left[12, 8, 3\right] _{2}^{\ast }$ |
5 | $\left(z_{7}, z_{2}, z_{2}, z_{7}, z_{1}\right) $ | $\left[20, 8, 8\right] _{2}^{\ast }$ |
5 | $\left(y_{4}, y_{1}, y_{3}, y_{2}, y_{5}\right) $ | $\left[20, 12, 4\right] _{2}^{\ast }$ |
7 | $\left(z_{4}, z_{1}, z_{4}, z_{1}, z_{1}, z_{4}, z_{4}\right) $ | $\left[28, 3, 16\right] _{2}^{\ast }$ |
7 | $\left(z_{7}, z_{5}, z_{7}, z_{6}, z_{6}, z_{5}, z_{1}\right) $ | $\left[28, 6, 12\right] _{2}^{\ast }$ |
7 | $\left(z_{6}, z_{5}, z_{6}, z_{3}, z_{3}, z_{5}, z_{4}\right) $ | $\left[28, 7, 12\right] _{2}^{\ast }$ |
7 | $\left(z_{7}, z_{2}, z_{2}, z_{4}, z_{5}, z_{7}, z_{4}\right) $ | $\left[28, 8, 10\right] _{2}^{\ast -1}$ |
7 | $\left(z_{5}, z_{2}, z_{2}, z_{4}, z_{5}, z_{7}, z_{4}\right) $ | $\left[28, 12, 8\right] _{2}^{\ast }$ |
7 | $\left(y_{1}, y_{1}, y_{4}, z_{2}, y_{6}, z_{8}, z_{5}\right) $ | $\left[28, 19, 4\right] _{2}^{\ast }$ |
7 | $\left(y_{2}, y_{4}, y_{4}, z_{8}, y_{1}, z_{5}, z_{1}\right) $ | $\left[28, 20, 4\right] _{2}^{\ast }$ |
9 | $\left(z_{8}, z_{8}, z_{3}, z_{4}, z_{3}, z_{6}, z_{2}, z_{5}, z_{5}\right) $ | $\left[36, 16, 8\right] _{2}^{\ast -2}$ |
9 | $\left(y_{7}, z_{6}, y_{2}, y_{5}, z_{1}, y_{8}, y_{2}, z_{1}, y_{8}\right) $ | $\left[36, 20, 6\right] _{2}^{\ast -2}$ |
15 | $\left(z_{5}, z_{3}, z_{4}, z_{1}, z_{4}, z_{6}, z_{7}, z_{5}, z_{7}, z_{1}, z_{3}, z_{6}, z_{3}, z_{4}, z_{7}\right) $ | $\left[60, 20, 16\right] _{2}^{b-1}$ |
15 | $\left(z_{4}, y_{7}, z_{7}, z_{1}, y_{5}, z_{5}, z_{3}, y_{8}, z_{8}, y_{4}, z_{4}, z_{2}, z_{3}, z_{6}, z_{7}\right) $ | $\left[60, 50, 4\right] _{2}^{\ast }$ |
17 | $\left(z_{7}, z_{1}, z_{2}, z_{8}, y_{2}, y_{7}, y_{7}, z_{1}, z_{3}, y_{2}, y_{3}, z_{6}, z_{3}, y_{4}, y_{4}, y_{3}, z_{6}\right) $ | $\left[68, 48, 6\right] _{2}^{\ast -2}$ |
21 | $\left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right) $ | $\left[84, 58, 8\right] _{2}^{b}$ |
21 | $\left(y_{2}y_{6}y_{4}y_{7}y_{5}z_{8}z_{3}y_{1}z_{5}y_{8}y_{4}z_{4}y_{3}z_{2}z_{3}z_{7}z_{4}z_{6}z_{8}y_{3}y_{8}\right) $ | $\left[84, 62, 6\right] _{2}^{b-2}$ |
21 | $\left(y_{2}z_{2}z_{6}y_{8}z_{3}y_{3}y_{3}z_{3}z_{1}z_{6}z_{8}z_{2}y_{1}z_{8}z_{7}z_{2}y_{1}y_{4}z_{8}y_{5}z_{7}\right) $ | $\left[84, 72, 4\right] _{2}^{b}$ |
23 | $% (y_{4}y_{4}y_{4}y_{1}y_{6}z_{8}y_{1}z_{6}y_{2}y_{2}z_{1}z_{4}y_{4}y_{1}z_{4}z_{6}y_{1}z_{7}y_{6}z_{1}z_{7}z_{3}z_{6}) $ | $\left[92, 66, 8\right] _{2}^{\ast }$ |
$n$ | $f\left(x\right) $ | $\phi \left({C}\right) $ |
3 | $\left(0, z_{4}, z_{4}\right) $ | $\left[12, 2, 8\right] _{2}^{\ast }$ |
3 | $\left(z_{7}, z_{2}, z_{8}\right) $ | $\left[12, 4, 6\right] _{2}^{\ast }$ |
3 | $\left(z_{1}, z_{8}, z_{6}\right) $ | $\left[12, 6, 4\right] _{2}^{\ast }$ |
3 | $\left(y_{7}, y_{5}, y_{2}\right) $ | $\left[12, 8, 3\right] _{2}^{\ast }$ |
5 | $\left(z_{7}, z_{2}, z_{2}, z_{7}, z_{1}\right) $ | $\left[20, 8, 8\right] _{2}^{\ast }$ |
5 | $\left(y_{4}, y_{1}, y_{3}, y_{2}, y_{5}\right) $ | $\left[20, 12, 4\right] _{2}^{\ast }$ |
7 | $\left(z_{4}, z_{1}, z_{4}, z_{1}, z_{1}, z_{4}, z_{4}\right) $ | $\left[28, 3, 16\right] _{2}^{\ast }$ |
7 | $\left(z_{7}, z_{5}, z_{7}, z_{6}, z_{6}, z_{5}, z_{1}\right) $ | $\left[28, 6, 12\right] _{2}^{\ast }$ |
7 | $\left(z_{6}, z_{5}, z_{6}, z_{3}, z_{3}, z_{5}, z_{4}\right) $ | $\left[28, 7, 12\right] _{2}^{\ast }$ |
7 | $\left(z_{7}, z_{2}, z_{2}, z_{4}, z_{5}, z_{7}, z_{4}\right) $ | $\left[28, 8, 10\right] _{2}^{\ast -1}$ |
7 | $\left(z_{5}, z_{2}, z_{2}, z_{4}, z_{5}, z_{7}, z_{4}\right) $ | $\left[28, 12, 8\right] _{2}^{\ast }$ |
7 | $\left(y_{1}, y_{1}, y_{4}, z_{2}, y_{6}, z_{8}, z_{5}\right) $ | $\left[28, 19, 4\right] _{2}^{\ast }$ |
7 | $\left(y_{2}, y_{4}, y_{4}, z_{8}, y_{1}, z_{5}, z_{1}\right) $ | $\left[28, 20, 4\right] _{2}^{\ast }$ |
9 | $\left(z_{8}, z_{8}, z_{3}, z_{4}, z_{3}, z_{6}, z_{2}, z_{5}, z_{5}\right) $ | $\left[36, 16, 8\right] _{2}^{\ast -2}$ |
9 | $\left(y_{7}, z_{6}, y_{2}, y_{5}, z_{1}, y_{8}, y_{2}, z_{1}, y_{8}\right) $ | $\left[36, 20, 6\right] _{2}^{\ast -2}$ |
15 | $\left(z_{5}, z_{3}, z_{4}, z_{1}, z_{4}, z_{6}, z_{7}, z_{5}, z_{7}, z_{1}, z_{3}, z_{6}, z_{3}, z_{4}, z_{7}\right) $ | $\left[60, 20, 16\right] _{2}^{b-1}$ |
15 | $\left(z_{4}, y_{7}, z_{7}, z_{1}, y_{5}, z_{5}, z_{3}, y_{8}, z_{8}, y_{4}, z_{4}, z_{2}, z_{3}, z_{6}, z_{7}\right) $ | $\left[60, 50, 4\right] _{2}^{\ast }$ |
17 | $\left(z_{7}, z_{1}, z_{2}, z_{8}, y_{2}, y_{7}, y_{7}, z_{1}, z_{3}, y_{2}, y_{3}, z_{6}, z_{3}, y_{4}, y_{4}, y_{3}, z_{6}\right) $ | $\left[68, 48, 6\right] _{2}^{\ast -2}$ |
21 | $\left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right) $ | $\left[84, 58, 8\right] _{2}^{b}$ |
21 | $\left(y_{2}y_{6}y_{4}y_{7}y_{5}z_{8}z_{3}y_{1}z_{5}y_{8}y_{4}z_{4}y_{3}z_{2}z_{3}z_{7}z_{4}z_{6}z_{8}y_{3}y_{8}\right) $ | $\left[84, 62, 6\right] _{2}^{b-2}$ |
21 | $\left(y_{2}z_{2}z_{6}y_{8}z_{3}y_{3}y_{3}z_{3}z_{1}z_{6}z_{8}z_{2}y_{1}z_{8}z_{7}z_{2}y_{1}y_{4}z_{8}y_{5}z_{7}\right) $ | $\left[84, 72, 4\right] _{2}^{b}$ |
23 | $% (y_{4}y_{4}y_{4}y_{1}y_{6}z_{8}y_{1}z_{6}y_{2}y_{2}z_{1}z_{4}y_{4}y_{1}z_{4}z_{6}y_{1}z_{7}y_{6}z_{1}z_{7}z_{3}z_{6}) $ | $\left[92, 66, 8\right] _{2}^{\ast }$ |
$n$ | $\left. f\left(x\right), g\left(x\right) \right. $ | $\phi \left({C}\right) $ |
3 | $\left. \left(z_{6}, z_{5, }z_{7}\right), \left(z_{8}, z_{8}, z_{8}\right) \right. $ | $\left[12, 6, 4\right] _{2}^{\ast }$ |
3 | $\left. \left(z_{8}, z_{6}, z_{7}\right), \left(z_{5}, z_{3}, z_{6}\right) \right. $ | $\left[12, 7, 4\right] _{2}^{\ast }$ |
5 | $\left. \left(z_{7}, z_{2}, z_{2}, z_{7}, z_{1}\right), \left(z_{3}, z_{3}, z_{3}, z_{7}, z_{1}\right) \right. $ | $\left[20, 13, 4\right] _{2}^{\ast }$ |
7 | $\left. \left(z_{7}, z_{4}, z_{4}, z_{6}, z_{2}, z_{4}, z_{7}\right), \left(z_{8}, z_{5}, z_{1}, z_{1}, z_{4}, z_{2}, z_{2}\right) \right. $ | $\left[28, 15, 6% \right] _{2}^{\ast }$ |
7 | $\left. \left(z_{5}, z_{5}, z_{7}, z_{2}, z_{4}, z_{7}, z_{6}\right), \left(z_{5}, y_{2}z_{8}, y_{5}, y_{1}, y_{1}, z_{7}\right) \right. $ | $\left[28, 21, 4% \right] _{2}^{\ast }$ |
7 | $\left. \left(z_{5}, z_{5}, z_{7}, z_{2}, z_{4}, z_{7}, z_{6}\right), \left(z_{7}, y_{5}, z_{1}, y_{7}, y_{2}, y_{4}, z_{3}\right) \right. $ | $\left[28, 22, 4% \right] _{2}^{\ast }$ |
15 | $\left. \begin{array}{c} \left(z_{5}, z_{3}, z_{4}, z_{1}, z_{4}, z_{6}, z_{7}, z_{5}, z_{7}, z_{1}, z_{3}, z_{6}, z_{3}, z_{4}, z_{7}\right), \\ \left(z_{2}, z_{7}, z_{3}, z_{7}, z_{3}, z_{1}, z_{8}, z_{6}, z_{3}, z_{2}, z_{1}, z_{4}, z_{4}, z_{3}, z_{6}\right)% \end{array}% \right. $ | $\left[60, 28, 10\right] _{2}^{b-2}$ |
15 | $\left. \begin{array}{c} \left(z_{5}, z_{3}, z_{4}, z_{1}, z_{4}, z_{6}, z_{7}, z_{5}, z_{7}, z_{1}, z_{3}, z_{6}, z_{3}, z_{4}, z_{7}\right), \\ \left(z_{4}, y_{1}, z_{3}, z_{7}, z_{8}, y_{2}, z_{4}, z_{5}, y_{2}, y_{5}, y_{5}, y_{7}, y_{8}, y_{6}, z_{4}\right)% \end{array}% \right.$ | $\left[60, 44, 6\right] _{2}^{b}$ |
17 | $\left. \begin{array}{c} \left(z_{7}, z_{1}, z_{2}, z_{8}, y_{2}, y_{7}, y_{7}, z_{1}, z_{3}, y_{2}, y_{3}, z_{6}, z_{3}, y_{4}, y_{4}, y_{3}, z_{6}\right), \\ \left(y_{5}, y_{8}, z_{2}, y_{7}, y_{5}, z_{2}, z_{7}, y_{5}, z_{1}, y_{7}, y_{2}, y_{2}, y_{8}, z_{4}, y_{6}, z_{6}, z_{2}\right)% \end{array}% \right.$ | $\left[68, 56, 4\right] _{2}^{b}$ |
17 | $\left. \begin{array}{c} \left(z_{7}, z_{1}, z_{2}, z_{8}, y_{2}, y_{7}, y_{7}, z_{1}, z_{3}, y_{2}, y_{3}, z_{6}, z_{3}, y_{4}, y_{4}, y_{3}, z_{6}\right), \\ \left(z_{1}, z_{5}, y_{3}, y_{8}, z_{6}, z_{4}, z_{2}, z_{6}, y_{7}, y_{5}, z_{3}, z_{2}, y_{2}, z_{3}, z_{7}, z_{6}, y_{2}\right)% \end{array}% \right.$ | $\left[68, 57, 4\right] _{2}^{b}$ |
21 | $\left. \begin{array}{c} \left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right), \\ \left(z_{3}z_{6}z_{3}z_{1}z_{1}z_{8}z_{3}z_{1}z_{6}z_{6}z_{4}z_{2}z_{3}z_{5}z_{8}z_{4}z_{5}z_{4}z_{7}z_{1}z_{7}\right)% \end{array}% \right.$ | $\left[84, 63, 6\right] _{2}^{\ast -2}$ |
21 | $\left. \begin{array}{c} \left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right), \\ \left(z_{6}y_{4}y_{8}z_{3}z_{7}z_{3}y_{5}y_{7}y_{5}z_{7}y_{7}z_{8}y_{4}z_{8}y_{3}y_{2}y_{4}z_{5}y_{3}z_{1}y_{2}\right)% \end{array}% \right.$ | $\left[84, 75, 4\right] _{2}^{\ast }$ |
21 | $\left. \begin{array}{c} \left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right), \\ \left(y_{6}y_{5}z_{7}y_{5}y_{5}z_{1}y_{2}y_{4}y_{6}z_{6}z_{4}y_{3}z_{8}z_{1}z_{5}y_{4}y_{4}z_{7}z_{8}z_{8}z_{6}\right)% \end{array}% \right.$ | $\left[84, 76, 4\right] _{2}^{\ast }$ |
23 | $\left. \begin{array}{c} (y_{4}y_{4}y_{4}y_{1}y_{6}z_{8}y_{1}z_{6}y_{2}y_{2}z_{1}z_{4}y_{4}y_{1}z_{4}z_{6}y_{1}z_{7}y_{6}z_{1}z_{7}z_{3}z_{6}), \\ \left(z_{5}z_{3}z_{1}z_{7}z_{6}z_{3}z_{5}z_{1}z_{3}z_{2}z_{5}z_{2}z_{2}z_{4}z_{7}z_{1}z_{1}z_{3}z_{2}z_{8}z_{3}z_{8}z_{4}\right)% \end{array}% \right. $ | $\left[92, 78, 4\right] _{2}^{b-1}$ |
$n$ | $\left. f\left(x\right), g\left(x\right) \right. $ | $\phi \left({C}\right) $ |
3 | $\left. \left(z_{6}, z_{5, }z_{7}\right), \left(z_{8}, z_{8}, z_{8}\right) \right. $ | $\left[12, 6, 4\right] _{2}^{\ast }$ |
3 | $\left. \left(z_{8}, z_{6}, z_{7}\right), \left(z_{5}, z_{3}, z_{6}\right) \right. $ | $\left[12, 7, 4\right] _{2}^{\ast }$ |
5 | $\left. \left(z_{7}, z_{2}, z_{2}, z_{7}, z_{1}\right), \left(z_{3}, z_{3}, z_{3}, z_{7}, z_{1}\right) \right. $ | $\left[20, 13, 4\right] _{2}^{\ast }$ |
7 | $\left. \left(z_{7}, z_{4}, z_{4}, z_{6}, z_{2}, z_{4}, z_{7}\right), \left(z_{8}, z_{5}, z_{1}, z_{1}, z_{4}, z_{2}, z_{2}\right) \right. $ | $\left[28, 15, 6% \right] _{2}^{\ast }$ |
7 | $\left. \left(z_{5}, z_{5}, z_{7}, z_{2}, z_{4}, z_{7}, z_{6}\right), \left(z_{5}, y_{2}z_{8}, y_{5}, y_{1}, y_{1}, z_{7}\right) \right. $ | $\left[28, 21, 4% \right] _{2}^{\ast }$ |
7 | $\left. \left(z_{5}, z_{5}, z_{7}, z_{2}, z_{4}, z_{7}, z_{6}\right), \left(z_{7}, y_{5}, z_{1}, y_{7}, y_{2}, y_{4}, z_{3}\right) \right. $ | $\left[28, 22, 4% \right] _{2}^{\ast }$ |
15 | $\left. \begin{array}{c} \left(z_{5}, z_{3}, z_{4}, z_{1}, z_{4}, z_{6}, z_{7}, z_{5}, z_{7}, z_{1}, z_{3}, z_{6}, z_{3}, z_{4}, z_{7}\right), \\ \left(z_{2}, z_{7}, z_{3}, z_{7}, z_{3}, z_{1}, z_{8}, z_{6}, z_{3}, z_{2}, z_{1}, z_{4}, z_{4}, z_{3}, z_{6}\right)% \end{array}% \right. $ | $\left[60, 28, 10\right] _{2}^{b-2}$ |
15 | $\left. \begin{array}{c} \left(z_{5}, z_{3}, z_{4}, z_{1}, z_{4}, z_{6}, z_{7}, z_{5}, z_{7}, z_{1}, z_{3}, z_{6}, z_{3}, z_{4}, z_{7}\right), \\ \left(z_{4}, y_{1}, z_{3}, z_{7}, z_{8}, y_{2}, z_{4}, z_{5}, y_{2}, y_{5}, y_{5}, y_{7}, y_{8}, y_{6}, z_{4}\right)% \end{array}% \right.$ | $\left[60, 44, 6\right] _{2}^{b}$ |
17 | $\left. \begin{array}{c} \left(z_{7}, z_{1}, z_{2}, z_{8}, y_{2}, y_{7}, y_{7}, z_{1}, z_{3}, y_{2}, y_{3}, z_{6}, z_{3}, y_{4}, y_{4}, y_{3}, z_{6}\right), \\ \left(y_{5}, y_{8}, z_{2}, y_{7}, y_{5}, z_{2}, z_{7}, y_{5}, z_{1}, y_{7}, y_{2}, y_{2}, y_{8}, z_{4}, y_{6}, z_{6}, z_{2}\right)% \end{array}% \right.$ | $\left[68, 56, 4\right] _{2}^{b}$ |
17 | $\left. \begin{array}{c} \left(z_{7}, z_{1}, z_{2}, z_{8}, y_{2}, y_{7}, y_{7}, z_{1}, z_{3}, y_{2}, y_{3}, z_{6}, z_{3}, y_{4}, y_{4}, y_{3}, z_{6}\right), \\ \left(z_{1}, z_{5}, y_{3}, y_{8}, z_{6}, z_{4}, z_{2}, z_{6}, y_{7}, y_{5}, z_{3}, z_{2}, y_{2}, z_{3}, z_{7}, z_{6}, y_{2}\right)% \end{array}% \right.$ | $\left[68, 57, 4\right] _{2}^{b}$ |
21 | $\left. \begin{array}{c} \left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right), \\ \left(z_{3}z_{6}z_{3}z_{1}z_{1}z_{8}z_{3}z_{1}z_{6}z_{6}z_{4}z_{2}z_{3}z_{5}z_{8}z_{4}z_{5}z_{4}z_{7}z_{1}z_{7}\right)% \end{array}% \right.$ | $\left[84, 63, 6\right] _{2}^{\ast -2}$ |
21 | $\left. \begin{array}{c} \left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right), \\ \left(z_{6}y_{4}y_{8}z_{3}z_{7}z_{3}y_{5}y_{7}y_{5}z_{7}y_{7}z_{8}y_{4}z_{8}y_{3}y_{2}y_{4}z_{5}y_{3}z_{1}y_{2}\right)% \end{array}% \right.$ | $\left[84, 75, 4\right] _{2}^{\ast }$ |
21 | $\left. \begin{array}{c} \left(z_{4}y_{3}y_{1}y_{8}z_{3}y_{2}z_{3}z_{2}z_{2}y_{2}y_{7}y_{2}y_{5}y_{8}z_{1}z_{2}y_{5}y_{6}y_{1}z_{6}z_{1}\right), \\ \left(y_{6}y_{5}z_{7}y_{5}y_{5}z_{1}y_{2}y_{4}y_{6}z_{6}z_{4}y_{3}z_{8}z_{1}z_{5}y_{4}y_{4}z_{7}z_{8}z_{8}z_{6}\right)% \end{array}% \right.$ | $\left[84, 76, 4\right] _{2}^{\ast }$ |
23 | $\left. \begin{array}{c} (y_{4}y_{4}y_{4}y_{1}y_{6}z_{8}y_{1}z_{6}y_{2}y_{2}z_{1}z_{4}y_{4}y_{1}z_{4}z_{6}y_{1}z_{7}y_{6}z_{1}z_{7}z_{3}z_{6}), \\ \left(z_{5}z_{3}z_{1}z_{7}z_{6}z_{3}z_{5}z_{1}z_{3}z_{2}z_{5}z_{2}z_{2}z_{4}z_{7}z_{1}z_{1}z_{3}z_{2}z_{8}z_{3}z_{8}z_{4}\right)% \end{array}% \right. $ | $\left[92, 78, 4\right] _{2}^{b-1}$ |
$n$ | $f\left(x\right) $ | $\phi _{\mathbb{Z}_{4}}\left({C}\right) $ | $\phi \left({C}\right) $ |
3 | $\left(00|02|02\right) $ | $\left(3, 4^{0}2^{2}, 8\right) $ | $\left[12, 2, 8\right] _{2}^{\ast }$ |
3 | $\left(03|03|03\right) $ | $\left(3, 4^{1}2^{1}, 6\right) $ | $\left[12, 3, 6\right] _{2}^{\ast }$ |
3 | $\left(01|00|01\right) $ | $\left(3, 4^{2}2^{3}, 6\right) $ | $\left[12, 7, 4\right] _{2}^{\ast }$ |
5 | $\left(21|21|21|21|21\right) $ | $\left(10, 4^{1}2^{1}, 10\right) $ | $% \left[20, 3, 10\right] _{2}^{\ast -1}$ |
5 | $\left(01|22|01|01|23\right) $ | $\left(10, 4^{4}2^{4}, 4\right) $ | $% \left(20, 2^{12}, 4\right) _{2}^{\ast }$ |
5 | $\left(03|03|21|23|00\right) $ | $\left(10, 4^{4}2^{5}, 4\right) $ | $% \left[20, 13, 4\right] _{2}^{\ast }$ |
7 | $\left(00|02|00|02|02|02|00\right) $ | $\left(14, 4^{0}2^{3}, 8\right) $ | $\left[28, 3, 16\right] _{2}^{\ast }$ |
7 | $\left(23|21|21|23|23|23|21\right) $ | $\left(14, 4^{1}2^{4}, 8\right) $ | $\left[28, 6, 12\right] _{2}^{\ast }$ |
7 | $\left(22|23|00|01|23|01|22\right) $ | $\left(14, 4^{3}2^{6}, 8\right) $ | $\left[28, 12, 8\right] _{2}^{\ast }$ |
7 | $\left(11|13|23|20|02|33|00\right) $ | $\left(14, 4^{6}2^{3}, 6\right) $ | $\left(28, 2^{15}, 6\right) _{2}^{\ast }$ |
7 | $\left(23|00|30|01|11|33|02\right) $ | $\left(14, 4^{8}2^{3}, 4\right) $ | $\left(28, 2^{19}, 4\right) _{2}^{\ast }$ |
7 | $\left(33|30|11|22|12|00|20\right) $ | $\left(14, 4^{9}2^{3}, 4\right) $ | $\left(28, 2^{21}, 4\right) _{2}^{\ast }$ |
7 | $\left(32|01|33|33|11|21|03\right) $ | $\left(14, 4^{9}2^{4}, 4\right) $ | $\left(28, 2^{22}, 4\right) _{2}^{\ast }$ |
9 | $\left(33|23|33|32|03|30|13|21|32\right) $ | $\left(18, 4^{10}2^{6}, 4\right) $ | $\left(36, 2^{26}, 4\right) _{2}^{\ast }$ |
9 | $\left(12|02|11|32|21|10|30|20|32\right) $ | $\left(18, 4^{10}2^{7}, 4\right) $ | $\left(36, 2^{27}, 4\right) _{2}^{\ast }$ |
17 | $\left(02|20|01|30|32|32|02|03|31|31|32|21|33|20|21\right) $ | $\left(34, 4^{24}2^{9}, 4\right) $ | $\left(68, 2^{57}, 4\right) _{2}^{\ast }$ |
$n$ | $f\left(x\right) $ | $\phi _{\mathbb{Z}_{4}}\left({C}\right) $ | $\phi \left({C}\right) $ |
3 | $\left(00|02|02\right) $ | $\left(3, 4^{0}2^{2}, 8\right) $ | $\left[12, 2, 8\right] _{2}^{\ast }$ |
3 | $\left(03|03|03\right) $ | $\left(3, 4^{1}2^{1}, 6\right) $ | $\left[12, 3, 6\right] _{2}^{\ast }$ |
3 | $\left(01|00|01\right) $ | $\left(3, 4^{2}2^{3}, 6\right) $ | $\left[12, 7, 4\right] _{2}^{\ast }$ |
5 | $\left(21|21|21|21|21\right) $ | $\left(10, 4^{1}2^{1}, 10\right) $ | $% \left[20, 3, 10\right] _{2}^{\ast -1}$ |
5 | $\left(01|22|01|01|23\right) $ | $\left(10, 4^{4}2^{4}, 4\right) $ | $% \left(20, 2^{12}, 4\right) _{2}^{\ast }$ |
5 | $\left(03|03|21|23|00\right) $ | $\left(10, 4^{4}2^{5}, 4\right) $ | $% \left[20, 13, 4\right] _{2}^{\ast }$ |
7 | $\left(00|02|00|02|02|02|00\right) $ | $\left(14, 4^{0}2^{3}, 8\right) $ | $\left[28, 3, 16\right] _{2}^{\ast }$ |
7 | $\left(23|21|21|23|23|23|21\right) $ | $\left(14, 4^{1}2^{4}, 8\right) $ | $\left[28, 6, 12\right] _{2}^{\ast }$ |
7 | $\left(22|23|00|01|23|01|22\right) $ | $\left(14, 4^{3}2^{6}, 8\right) $ | $\left[28, 12, 8\right] _{2}^{\ast }$ |
7 | $\left(11|13|23|20|02|33|00\right) $ | $\left(14, 4^{6}2^{3}, 6\right) $ | $\left(28, 2^{15}, 6\right) _{2}^{\ast }$ |
7 | $\left(23|00|30|01|11|33|02\right) $ | $\left(14, 4^{8}2^{3}, 4\right) $ | $\left(28, 2^{19}, 4\right) _{2}^{\ast }$ |
7 | $\left(33|30|11|22|12|00|20\right) $ | $\left(14, 4^{9}2^{3}, 4\right) $ | $\left(28, 2^{21}, 4\right) _{2}^{\ast }$ |
7 | $\left(32|01|33|33|11|21|03\right) $ | $\left(14, 4^{9}2^{4}, 4\right) $ | $\left(28, 2^{22}, 4\right) _{2}^{\ast }$ |
9 | $\left(33|23|33|32|03|30|13|21|32\right) $ | $\left(18, 4^{10}2^{6}, 4\right) $ | $\left(36, 2^{26}, 4\right) _{2}^{\ast }$ |
9 | $\left(12|02|11|32|21|10|30|20|32\right) $ | $\left(18, 4^{10}2^{7}, 4\right) $ | $\left(36, 2^{27}, 4\right) _{2}^{\ast }$ |
17 | $\left(02|20|01|30|32|32|02|03|31|31|32|21|33|20|21\right) $ | $\left(34, 4^{24}2^{9}, 4\right) $ | $\left(68, 2^{57}, 4\right) _{2}^{\ast }$ |
$n$ | $f\left(x\right) $ | ${C}$ | $\phi \left({C}\right) $ |
3 | $\left(8, 8, 0\right) $ | $\left[3, 2^{2}, 8\right] $ | $\left(12, 2^{2}, 8\right) _{2}^{\ast }$ |
3 | $\left(6, 6, 6\right) $ | $\left[3, 8^{1}, 6\right] $ | $\left(12, 2^{3}, 6\right) _{2}^{\ast }$ |
3 | $\left(12, 4, 8\right) $ | $\left[3, 4^{2}2^{1}, 4\right] $ | $\left(12, 2^{5}, 4\right) _{2}^{\ast }$ |
3 | $\left(4, 6, 6\right) $ | $\left[3, 8^{2}, 4\right] $ | $\left(12, 2^{6}, 4\right) _{2}^{\ast }$ |
3 | $\left(2, 2, 4\right) $ | $\left[3, 8^{2}2^{1}, 4\right] $ | $\left(12, 2^{7}, 4\right) _{2}^{\ast }$ |
3 | $\left(11, 3, 12\right) $ | $\left[5, 8^{4}, 4\right] $ | $\left(12, 2^{11}, 2\right) _{2}^{\ast }$ |
5 | $\left(14, 10, 6, 6, 12\right) $ | $\left[5, 8^{4}, 4\right] $ | $\left(20, 2^{12}, 4\right) _{2}^{\ast }$ |
5 | $\left(12, 14, 8, 4, 2\right) $ | $\left[5, 8^{4}2^{1}, 4\right] $ | $\left(20, 2^{13}, 4\right) _{2}^{\ast }$ |
5 | $\left(13, 6, 7, 10, 12\right) $ | $\left[5, 16^{4}, 2\right] $ | $\left(20, 2^{16}, 2\right) _{2}^{\ast }$ |
5 | $\left(7, 5, 3, 11, 14\right) $ | $\left[5, 16^{4}2^{1}, 2\right] $ | $% \left(20, 2^{17}, 2\right) _{2}^{\ast }$ |
7 | $\left(10, 12, 6, 10, 2, 8, 0\right) $ | $\left[7, 8^{3}, 10\right] $ | $% \left(28, 2^{9}, 10\right) _{2}^{\ast }$ |
7 | $\left(2, 12, 12, 6, 12, 14, 6\right) $ | $\left[7, 8^{3}2^{3}, 8\right] $ | $% \left(28, 2^{12}, 8\right) _{2}^{\ast }$ |
7 | $\left(13, 11, 7, 13, 1, 5, 7\right) $ | $\left[7, 16^{1}8^{3}, 7\right] $ | $% \left(28, 2^{13}, 7\right) _{2}^{\ast -1}$ |
7 | $\left(1, 4, 14, 7, 11, 7, 4\right) $ | $\left[7, 16^{3}2^{3}, 6\right] $ | $% \left(28, 2^{15}, 6\right) _{2}^{\ast }$ |
$n$ | $f\left(x\right) $ | ${C}$ | $\phi \left({C}\right) $ |
3 | $\left(8, 8, 0\right) $ | $\left[3, 2^{2}, 8\right] $ | $\left(12, 2^{2}, 8\right) _{2}^{\ast }$ |
3 | $\left(6, 6, 6\right) $ | $\left[3, 8^{1}, 6\right] $ | $\left(12, 2^{3}, 6\right) _{2}^{\ast }$ |
3 | $\left(12, 4, 8\right) $ | $\left[3, 4^{2}2^{1}, 4\right] $ | $\left(12, 2^{5}, 4\right) _{2}^{\ast }$ |
3 | $\left(4, 6, 6\right) $ | $\left[3, 8^{2}, 4\right] $ | $\left(12, 2^{6}, 4\right) _{2}^{\ast }$ |
3 | $\left(2, 2, 4\right) $ | $\left[3, 8^{2}2^{1}, 4\right] $ | $\left(12, 2^{7}, 4\right) _{2}^{\ast }$ |
3 | $\left(11, 3, 12\right) $ | $\left[5, 8^{4}, 4\right] $ | $\left(12, 2^{11}, 2\right) _{2}^{\ast }$ |
5 | $\left(14, 10, 6, 6, 12\right) $ | $\left[5, 8^{4}, 4\right] $ | $\left(20, 2^{12}, 4\right) _{2}^{\ast }$ |
5 | $\left(12, 14, 8, 4, 2\right) $ | $\left[5, 8^{4}2^{1}, 4\right] $ | $\left(20, 2^{13}, 4\right) _{2}^{\ast }$ |
5 | $\left(13, 6, 7, 10, 12\right) $ | $\left[5, 16^{4}, 2\right] $ | $\left(20, 2^{16}, 2\right) _{2}^{\ast }$ |
5 | $\left(7, 5, 3, 11, 14\right) $ | $\left[5, 16^{4}2^{1}, 2\right] $ | $% \left(20, 2^{17}, 2\right) _{2}^{\ast }$ |
7 | $\left(10, 12, 6, 10, 2, 8, 0\right) $ | $\left[7, 8^{3}, 10\right] $ | $% \left(28, 2^{9}, 10\right) _{2}^{\ast }$ |
7 | $\left(2, 12, 12, 6, 12, 14, 6\right) $ | $\left[7, 8^{3}2^{3}, 8\right] $ | $% \left(28, 2^{12}, 8\right) _{2}^{\ast }$ |
7 | $\left(13, 11, 7, 13, 1, 5, 7\right) $ | $\left[7, 16^{1}8^{3}, 7\right] $ | $% \left(28, 2^{13}, 7\right) _{2}^{\ast -1}$ |
7 | $\left(1, 4, 14, 7, 11, 7, 4\right) $ | $\left[7, 16^{3}2^{3}, 6\right] $ | $% \left(28, 2^{15}, 6\right) _{2}^{\ast }$ |
[1] |
Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004 |
[2] |
Steven T. Dougherty, Esengül Saltürk, Steve Szabo. Codes over local rings of order 16 and binary codes. Advances in Mathematics of Communications, 2016, 10 (2) : 379-391. doi: 10.3934/amc.2016012 |
[3] |
Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409 |
[4] |
Zihui Liu. Galois LCD codes over rings. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022002 |
[5] |
Anderson Silva, C. Polcino Milies. Cyclic codes of length $ 2p^n $ over finite chain rings. Advances in Mathematics of Communications, 2020, 14 (2) : 233-245. doi: 10.3934/amc.2020017 |
[6] |
Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034 |
[7] |
Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39 |
[8] |
Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253 |
[9] |
Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273 |
[10] |
Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395 |
[11] |
Nuh Aydin, Yasemin Cengellenmis, Abdullah Dertli, Steven T. Dougherty, Esengül Saltürk. Skew constacyclic codes over the local Frobenius non-chain rings of order 16. Advances in Mathematics of Communications, 2020, 14 (1) : 53-67. doi: 10.3934/amc.2020005 |
[12] |
Gianira N. Alfarano, Anina Gruica, Julia Lieb, Joachim Rosenthal. Convolutional codes over finite chain rings, MDP codes and their characterization. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022028 |
[13] |
Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571 |
[14] |
Thomas Westerbäck. Parity check systems of nonlinear codes over finite commutative Frobenius rings. Advances in Mathematics of Communications, 2017, 11 (3) : 409-427. doi: 10.3934/amc.2017035 |
[15] |
Zihui Liu, Dajian Liao. Higher weights and near-MDR codes over chain rings. Advances in Mathematics of Communications, 2018, 12 (4) : 761-772. doi: 10.3934/amc.2018045 |
[16] |
Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011 |
[17] |
Hai Q. Dinh, Hien D. T. Nguyen. On some classes of constacyclic codes over polynomial residue rings. Advances in Mathematics of Communications, 2012, 6 (2) : 175-191. doi: 10.3934/amc.2012.6.175 |
[18] |
W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2008, 2 (3) : 309-343. doi: 10.3934/amc.2008.2.309 |
[19] |
W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2007, 1 (4) : 427-459. doi: 10.3934/amc.2007.1.427 |
[20] |
David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]