-
Previous Article
On the multiple threshold decoding of LDPC codes over GF(q)
- AMC Home
- This Issue
-
Next Article
Cyclic codes over local Frobenius rings of order 16
Generalized Hamming weights of codes over the $\mathcal{GH}$ curve
Universidade Federal de Uberlândia, Campus Santa Mônica, CEP 38.408-100, Av. Joao Naves de Avila, 2121, Uberlandia-MG, Brazil |
In this work, we studied the generalized Hamming weights of algebraic geometric Goppa codes on the $\mathcal{GH}$ curve. Especially, exact results on the second generalized Hamming weight are given for almost all cases. Furthermore, we apply the results obtained to show an example where the weight hierarchy characterizes the performance of the $\mathcal{GH}$ codes on a noiseless communication channel.
References:
[1] |
S. V. Bulygin,
Generalized Hermitian codes over GF (2r), IEEE Trans. Inform. Theory, 52 (2006), 4664-4669.
doi: 10.1109/TIT.2006.881831. |
[2] |
A. Garcia and H. Stichtenoth,
A class of polynomials over finite fields, Finite Fields Appl., 5 (1999), 424-435.
doi: 10.1006/ffta.1999.0261. |
[3] |
O. Geil, C. Munuera, D. Ruano and F. Torres,
On the order bounds for one-point AG codes, Adv. Math. Commun., 3 (2011), 489-504.
doi: 10.3934/amc.2011.5.489. |
[4] |
V. D. Goppa, Codes associated with divisors, Problems Inform. Transm., 13 (1977), 22-26. Google Scholar |
[5] |
P. Heijnen and R. Pellikaan,
Generalized Hamming weights of q-ary Reed-Muller codes, IEEE Trans. Inform. Theory, 44 (1998), 181-197.
doi: 10.1109/18.651015. |
[6] |
T. Høholdt, J. H. van Lint and R. Pellikaan, Algebraic-geometry codes, in Handbook of Coding Theory, Elsevier, Amsterdam, 1998. |
[7] |
P. V. Kumar, H. Stichtenoth and K. Yang,
On the weight hierarchy of geometric Goppa codes, IEEE Trans. Inform. Theory, 40 (1994), 913-920.
doi: 10.1109/18.335903. |
[8] |
H. Lange and G. Martens,
On the gonality sequence of an algebraic curve, Manuscripta Math., 137 (2012), 457-473.
doi: 10.1007/s00229-011-0475-4. |
[9] |
C. Munuera,
On the generalized Hamming weights of geometric Goppa codes, IEEE Trans. Inform. Theory, 40 (1994), 2092-2099.
doi: 10.1109/18.340488. |
[10] |
C. Munuera, A. Sep′ulveda and F. Torres,
Castle curves and codes, Adv. Math. Commun., 4 (2009), 399-408.
doi: 10.3934/amc.2009.3.399. |
[11] |
C. Munuera, A. Sep′ulveda and F. Torres,
Generalized Hermitian codes, Des. Codes Cryptogr., 69 (2013), 123-130.
doi: 10.1007/s10623-012-9627-0. |
[12] |
C. Munuera and F. Torres,
Bounding the trellis state complexity of algebraic geometric codes, Appl. Algebra Engrg. Comm. Comput., 15 (2004), 81-100.
doi: 10.1007/s00200-004-0150-z. |
[13] |
W. Olaya León, Pesos de Hamming de Códigos Castillo, Ph. D thesis, University of Valladolid, Spain, 2014. Google Scholar |
[14] |
L. H. Ozarow and A. D. Wyner,
Wire-Tap-channel Ⅱ, AT & T Bell Labs. Tech. J., 63 (1984), 2135-2157.
doi: 10.1002/j.1538-7305.1975.tb02040.x. |
[15] |
H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, New York, 1993. |
[16] |
V. K. Wei,
Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory, 37 (1991), 1412-1418.
doi: 10.1109/18.133259. |
show all references
References:
[1] |
S. V. Bulygin,
Generalized Hermitian codes over GF (2r), IEEE Trans. Inform. Theory, 52 (2006), 4664-4669.
doi: 10.1109/TIT.2006.881831. |
[2] |
A. Garcia and H. Stichtenoth,
A class of polynomials over finite fields, Finite Fields Appl., 5 (1999), 424-435.
doi: 10.1006/ffta.1999.0261. |
[3] |
O. Geil, C. Munuera, D. Ruano and F. Torres,
On the order bounds for one-point AG codes, Adv. Math. Commun., 3 (2011), 489-504.
doi: 10.3934/amc.2011.5.489. |
[4] |
V. D. Goppa, Codes associated with divisors, Problems Inform. Transm., 13 (1977), 22-26. Google Scholar |
[5] |
P. Heijnen and R. Pellikaan,
Generalized Hamming weights of q-ary Reed-Muller codes, IEEE Trans. Inform. Theory, 44 (1998), 181-197.
doi: 10.1109/18.651015. |
[6] |
T. Høholdt, J. H. van Lint and R. Pellikaan, Algebraic-geometry codes, in Handbook of Coding Theory, Elsevier, Amsterdam, 1998. |
[7] |
P. V. Kumar, H. Stichtenoth and K. Yang,
On the weight hierarchy of geometric Goppa codes, IEEE Trans. Inform. Theory, 40 (1994), 913-920.
doi: 10.1109/18.335903. |
[8] |
H. Lange and G. Martens,
On the gonality sequence of an algebraic curve, Manuscripta Math., 137 (2012), 457-473.
doi: 10.1007/s00229-011-0475-4. |
[9] |
C. Munuera,
On the generalized Hamming weights of geometric Goppa codes, IEEE Trans. Inform. Theory, 40 (1994), 2092-2099.
doi: 10.1109/18.340488. |
[10] |
C. Munuera, A. Sep′ulveda and F. Torres,
Castle curves and codes, Adv. Math. Commun., 4 (2009), 399-408.
doi: 10.3934/amc.2009.3.399. |
[11] |
C. Munuera, A. Sep′ulveda and F. Torres,
Generalized Hermitian codes, Des. Codes Cryptogr., 69 (2013), 123-130.
doi: 10.1007/s10623-012-9627-0. |
[12] |
C. Munuera and F. Torres,
Bounding the trellis state complexity of algebraic geometric codes, Appl. Algebra Engrg. Comm. Comput., 15 (2004), 81-100.
doi: 10.1007/s00200-004-0150-z. |
[13] |
W. Olaya León, Pesos de Hamming de Códigos Castillo, Ph. D thesis, University of Valladolid, Spain, 2014. Google Scholar |
[14] |
L. H. Ozarow and A. D. Wyner,
Wire-Tap-channel Ⅱ, AT & T Bell Labs. Tech. J., 63 (1984), 2135-2157.
doi: 10.1002/j.1538-7305.1975.tb02040.x. |
[15] |
H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, New York, 1993. |
[16] |
V. K. Wei,
Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory, 37 (1991), 1412-1418.
doi: 10.1109/18.133259. |
[1] |
Olav Geil, Stefano Martin. Relative generalized Hamming weights of q-ary Reed-Muller codes. Advances in Mathematics of Communications, 2017, 11 (3) : 503-531. doi: 10.3934/amc.2017041 |
[2] |
Anuradha Sharma, Saroj Rani. Trace description and Hamming weights of irreducible constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 123-141. doi: 10.3934/amc.2018008 |
[3] |
Relinde Jurrius, Ruud Pellikaan. On defining generalized rank weights. Advances in Mathematics of Communications, 2017, 11 (1) : 225-235. doi: 10.3934/amc.2017014 |
[4] |
Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029 |
[5] |
Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505-513. doi: 10.3934/amc.2018029 |
[6] |
Koray Karabina, Berkant Ustaoglu. Invalid-curve attacks on (hyper)elliptic curve cryptosystems. Advances in Mathematics of Communications, 2010, 4 (3) : 307-321. doi: 10.3934/amc.2010.4.307 |
[7] |
Robert L. Devaney, Daniel M. Look. Buried Sierpinski curve Julia sets. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1035-1046. doi: 10.3934/dcds.2005.13.1035 |
[8] |
Joaquim Borges, Josep Rifà, Victor Zinoviev. Completely regular codes by concatenating Hamming codes. Advances in Mathematics of Communications, 2018, 12 (2) : 337-349. doi: 10.3934/amc.2018021 |
[9] |
Gérard Cohen, Alexander Vardy. Duality between packings and coverings of the Hamming space. Advances in Mathematics of Communications, 2007, 1 (1) : 93-97. doi: 10.3934/amc.2007.1.93 |
[10] |
Yiwei Liu, Zihui Liu. On some classes of codes with a few weights. Advances in Mathematics of Communications, 2018, 12 (2) : 415-428. doi: 10.3934/amc.2018025 |
[11] |
Wenjing Chen, Louis Dupaigne, Marius Ghergu. A new critical curve for the Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2469-2479. doi: 10.3934/dcds.2014.34.2469 |
[12] |
Diego F. Aranha, Ricardo Dahab, Julio López, Leonardo B. Oliveira. Efficient implementation of elliptic curve cryptography in wireless sensors. Advances in Mathematics of Communications, 2010, 4 (2) : 169-187. doi: 10.3934/amc.2010.4.169 |
[13] |
Huaiyu Jian, Hongjie Ju, Wei Sun. Traveling fronts of curve flow with external force field. Communications on Pure & Applied Analysis, 2010, 9 (4) : 975-986. doi: 10.3934/cpaa.2010.9.975 |
[14] |
Uriel Kaufmann, Humberto Ramos Quoirin, Kenichiro Umezu. A curve of positive solutions for an indefinite sublinear Dirichlet problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 817-845. doi: 10.3934/dcds.2020063 |
[15] |
Agnieszka Badeńska. No entire function with real multipliers in class $\mathcal{S}$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3321-3327. doi: 10.3934/dcds.2013.33.3321 |
[16] |
Emanuela Caliceti, Sandro Graffi. An existence criterion for the $\mathcal{PT}$-symmetric phase transition. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1955-1967. doi: 10.3934/dcdsb.2014.19.1955 |
[17] |
Tanja Eisner, Jakub Konieczny. Automatic sequences as good weights for ergodic theorems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4087-4115. doi: 10.3934/dcds.2018178 |
[18] |
Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure & Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941 |
[19] |
Tony Liimatainen, Mikko Salo. Nowhere conformally homogeneous manifolds and limiting Carleman weights. Inverse Problems & Imaging, 2012, 6 (3) : 523-530. doi: 10.3934/ipi.2012.6.523 |
[20] |
Pablo Angulo-Ardoy. On the set of metrics without local limiting Carleman weights. Inverse Problems & Imaging, 2017, 11 (1) : 47-64. doi: 10.3934/ipi.2017003 |
2018 Impact Factor: 0.879
Tools
Metrics
Other articles
by authors
[Back to Top]