Pseudo-random sequence generators are widely used in many areas, such as stream ciphers, radar systems, Monte-Carlo simulations and multiple access systems. Generalization of linear feedback shift registers (LFSRs) and feedback with carry shift registers (FCSRs), algebraic feedback shift registers (AFSRs) [
Citation: |
[1] | F. Arnault, T. P. Berger and A. Necer, Feedback with carry shift registers synthesis with the Euclidean algorithm, IEEE Trans. Inform. Theory, 50 (2004), 910-917. doi: 10.1109/TIT.2004.826651. |
[2] | N. Courtois and W. Meier, Algebraic attacks on stream ciphers with linear feedback, in Advances in Cryptology-EUROCRYPT 2003, Springer, 2003,345-359. doi: 10.1007/3-540-39200-9_21. |
[3] | M. Goresky and A. Klapper, Feedback registers based on ramified extensions of the 2-adic numbers, in Advances in Cryptology-EUROCRYPT '94, Springer, 1995,215-222. doi: 10.1007/BFb0053437. |
[4] | M. Goresky and A. Klapper, Algebraic Shift Register Sequences, Cambridge Univ. Press, 2012. |
[5] | A. Klapper and M. Goresky, Cryptanalysis based on 2-adic rational approximation, in Advances in Cryptology-CRYPTO '95, Springer, 1995,262-273. doi: 10.1007/3-540-44750-4_21. |
[6] | A. Klapper and M. Goresky, Feedback shift registers. 2-adic span, and combiners with memory, Cryptology J., 10 (1997), 111-147. doi: 10.1007/s001459900024. |
[7] | A. Klapper and J. Xu, Algebraic feedback shift registers, Theoret. Comp. Sci., 226 (1999), 61-92. doi: 10.1016/S0304-3975(99)00066-3. |
[8] | A. Klapper and J. Xu, Register synthesis for algebraic feedback shift registers based on nonprimes, Des. Codes Cryptogr., 31 (2004), 227-250. doi: 10.1023/B:DESI.0000015886.71135.e1. |
[9] | D. Lee, J. Kim, J. Hong, J. Han and D. Moon, Algebraic attacks on summation generators, in Fast Software Encryption, Springer, 2004, 34-48. doi: 10.1007/978-3-540-25937-4_3. |
[10] | W. LeVeque, Topics in Number Theory, Courier Corporation, 2002. |
[11] | W. Liu and A. Klapper, A lattice rational approximation algorithm for AFSRs over quadratic integer rings, in Sequences and Their Applications -SETA 2014, Springer, 2014,200-211. doi: 10.1007/978-3-319-12325-7_17. |
[12] | J. L. Massey, Shift register synthesis and BCH decoding, IEEE Trans. Inform. Theory, 15 (1969), 122-127. |
[13] | P. Q. Nguyen and D. Stehlé, Low-dimensional lattice basis reduction revisited, ACM Trans. Algor. (TALG), 5 (2009), 46. doi: 10.1145/1597036.1597050. |
An algebraic feedback shift register of Length m
The Extended Euclidean Rational Approximation Algorithm