February  2017, 11(1): 139-150. doi: 10.3934/amc.2017008

AFSRs synthesis with the extended Euclidean rational approximation algorithm

1. 

Department of Computer Science, William Paterson University of New Jersey, Wayne, NJ 07470 USA

2. 

Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA

Received  July 2015 Published  February 2017

Fund Project: This material is based upon work supported by the National Science Foundation under grants No. CCF-0514660 and CNS-1420227. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

Pseudo-random sequence generators are widely used in many areas, such as stream ciphers, radar systems, Monte-Carlo simulations and multiple access systems. Generalization of linear feedback shift registers (LFSRs) and feedback with carry shift registers (FCSRs), algebraic feedback shift registers (AFSRs) [7] can generate pseudo-random sequences over an arbitrary finite field. In this paper, we present an algorithm derived from the Extended Euclidean Algorithm that can efficiently find a smallest AFSR over a quadratic field for a given sequence. It is an analog of the Extended Euclidean Rational Approximation Algorithm [1] used in solving the FCSR synthesis problem. For a given sequence $\mathbf{a}$, $2\Lambda(\alpha)+1$ terms of sequence $\mathbf{a}$ are needed to find the smallest AFSR, where $\Lambda(\alpha)$ is a complexity measure that reflects the size of the smallest AFSR that outputs $\mathbf{a}$.

Citation: Weihua Liu, Andrew Klapper. AFSRs synthesis with the extended Euclidean rational approximation algorithm. Advances in Mathematics of Communications, 2017, 11 (1) : 139-150. doi: 10.3934/amc.2017008
References:
[1]

F. ArnaultT. P. Berger and A. Necer, Feedback with carry shift registers synthesis with the Euclidean algorithm, IEEE Trans. Inform. Theory, 50 (2004), 910-917.  doi: 10.1109/TIT.2004.826651.  Google Scholar

[2]

N. Courtois and W. Meier, Algebraic attacks on stream ciphers with linear feedback, in Advances in Cryptology-EUROCRYPT 2003, Springer, 2003,345-359. doi: 10.1007/3-540-39200-9_21.  Google Scholar

[3]

M. Goresky and A. Klapper, Feedback registers based on ramified extensions of the 2-adic numbers, in Advances in Cryptology-EUROCRYPT '94, Springer, 1995,215-222. doi: 10.1007/BFb0053437.  Google Scholar

[4]

M. Goresky and A. Klapper, Algebraic Shift Register Sequences, Cambridge Univ. Press, 2012.  Google Scholar

[5]

A. Klapper and M. Goresky, Cryptanalysis based on 2-adic rational approximation, in Advances in Cryptology-CRYPTO '95, Springer, 1995,262-273. doi: 10.1007/3-540-44750-4_21.  Google Scholar

[6]

A. Klapper and M. Goresky, Feedback shift registers. 2-adic span, and combiners with memory, Cryptology J., 10 (1997), 111-147.  doi: 10.1007/s001459900024.  Google Scholar

[7]

A. Klapper and J. Xu, Algebraic feedback shift registers, Theoret. Comp. Sci., 226 (1999), 61-92.  doi: 10.1016/S0304-3975(99)00066-3.  Google Scholar

[8]

A. Klapper and J. Xu, Register synthesis for algebraic feedback shift registers based on nonprimes, Des. Codes Cryptogr., 31 (2004), 227-250.  doi: 10.1023/B:DESI.0000015886.71135.e1.  Google Scholar

[9]

D. Lee, J. Kim, J. Hong, J. Han and D. Moon, Algebraic attacks on summation generators, in Fast Software Encryption, Springer, 2004, 34-48. doi: 10.1007/978-3-540-25937-4_3.  Google Scholar

[10]

W. LeVeque, Topics in Number Theory, Courier Corporation, 2002. Google Scholar

[11]

W. Liu and A. Klapper, A lattice rational approximation algorithm for AFSRs over quadratic integer rings, in Sequences and Their Applications -SETA 2014, Springer, 2014,200-211. doi: 10.1007/978-3-319-12325-7_17.  Google Scholar

[12]

J. L. Massey, Shift register synthesis and BCH decoding, IEEE Trans. Inform. Theory, 15 (1969), 122-127.   Google Scholar

[13]

P. Q. Nguyen and D. Stehlé, Low-dimensional lattice basis reduction revisited, ACM Trans. Algor. (TALG), 5 (2009), 46. doi: 10.1145/1597036.1597050.  Google Scholar

show all references

References:
[1]

F. ArnaultT. P. Berger and A. Necer, Feedback with carry shift registers synthesis with the Euclidean algorithm, IEEE Trans. Inform. Theory, 50 (2004), 910-917.  doi: 10.1109/TIT.2004.826651.  Google Scholar

[2]

N. Courtois and W. Meier, Algebraic attacks on stream ciphers with linear feedback, in Advances in Cryptology-EUROCRYPT 2003, Springer, 2003,345-359. doi: 10.1007/3-540-39200-9_21.  Google Scholar

[3]

M. Goresky and A. Klapper, Feedback registers based on ramified extensions of the 2-adic numbers, in Advances in Cryptology-EUROCRYPT '94, Springer, 1995,215-222. doi: 10.1007/BFb0053437.  Google Scholar

[4]

M. Goresky and A. Klapper, Algebraic Shift Register Sequences, Cambridge Univ. Press, 2012.  Google Scholar

[5]

A. Klapper and M. Goresky, Cryptanalysis based on 2-adic rational approximation, in Advances in Cryptology-CRYPTO '95, Springer, 1995,262-273. doi: 10.1007/3-540-44750-4_21.  Google Scholar

[6]

A. Klapper and M. Goresky, Feedback shift registers. 2-adic span, and combiners with memory, Cryptology J., 10 (1997), 111-147.  doi: 10.1007/s001459900024.  Google Scholar

[7]

A. Klapper and J. Xu, Algebraic feedback shift registers, Theoret. Comp. Sci., 226 (1999), 61-92.  doi: 10.1016/S0304-3975(99)00066-3.  Google Scholar

[8]

A. Klapper and J. Xu, Register synthesis for algebraic feedback shift registers based on nonprimes, Des. Codes Cryptogr., 31 (2004), 227-250.  doi: 10.1023/B:DESI.0000015886.71135.e1.  Google Scholar

[9]

D. Lee, J. Kim, J. Hong, J. Han and D. Moon, Algebraic attacks on summation generators, in Fast Software Encryption, Springer, 2004, 34-48. doi: 10.1007/978-3-540-25937-4_3.  Google Scholar

[10]

W. LeVeque, Topics in Number Theory, Courier Corporation, 2002. Google Scholar

[11]

W. Liu and A. Klapper, A lattice rational approximation algorithm for AFSRs over quadratic integer rings, in Sequences and Their Applications -SETA 2014, Springer, 2014,200-211. doi: 10.1007/978-3-319-12325-7_17.  Google Scholar

[12]

J. L. Massey, Shift register synthesis and BCH decoding, IEEE Trans. Inform. Theory, 15 (1969), 122-127.   Google Scholar

[13]

P. Q. Nguyen and D. Stehlé, Low-dimensional lattice basis reduction revisited, ACM Trans. Algor. (TALG), 5 (2009), 46. doi: 10.1145/1597036.1597050.  Google Scholar

Figure 1.  An algebraic feedback shift register of Length m
Figure 2.  The Extended Euclidean Rational Approximation Algorithm
[1]

Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128

[2]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[3]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[4]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020389

[5]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[6]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[7]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[8]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[9]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[10]

Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048

[11]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[12]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

[13]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[14]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[15]

Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060

[16]

Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088

[17]

Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007

[18]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[19]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[20]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (61)
  • HTML views (58)
  • Cited by (1)

Other articles
by authors

[Back to Top]