February  2017, 11(1): 179-185. doi: 10.3934/amc.2017011

Codes from hall planes of odd order

Institute of Mathematics, Physics and Computer Science, Aberystwyth University, Aberystwyth SY23 3BZ, UK

Received  August 2015 Published  February 2017

We show explicitly that the dimension of the ternary code of the Hall plane of order 9 is greater than the dimension of the ternary code of the desarguesian plane of order 9. The proof requires finding a word with some defined properties in the dual ternary code of the desarguesian plane of order 9. The idea can be generalised for other orders, provided that words in the dual code of the desarguesian projective plane that have the specified properties can be found.

Citation: J. D. Key, T. P. McDonough, V. C. Mavron. Codes from hall planes of odd order. Advances in Mathematics of Communications, 2017, 11 (1) : 179-185. doi: 10.3934/amc.2017011
References:
[1] E. F. Assmus Jr and J. D. Key, Designs and Their Codes, Cambridge Univ. Press, Cambridge, 1992. doi: 10.1017/CBO9781316529836. Google Scholar
[2]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system Ⅰ: the user language, J. Symb. Comput., 24 (1997), 235-265. doi: 10.1006/jsco.1996.0125. Google Scholar

[3]

J. Cannon, A. Steel and G. White, Linear codes over finite fields, in Handbook of Magma Functions (eds. J. Cannon and W. Bosma), Computational Algebra Group, Dep. Math. , Univ. Sydney, 2006, V2. 13,3951-4023.Google Scholar

[4]

P. Dembowski, Finite geometries, in Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1968. Google Scholar

[5]

The GAP Group, GAP -Groups, Algorithms, and Programming, Version 4. 4. 12,2008, available at http://www.gap-system.org.Google Scholar

[6]

D. GhinelliM. J. de Resmini and J. D. Key, Minimum words of codes from affine planes, J. Geom., 91 (2008), 43-51. doi: 10.1007/s00022-008-2096-y. Google Scholar

[7]

D. R. Hughes and F. C. Piper, Projective Planes, Springer-Verlag, New York, 1973. Google Scholar

[8]

J. D. Key and M. J. de Resmini, Small sets of even type and codewords, J. Geom., 61 (1998), 83-104. doi: 10.1007/BF01237498. Google Scholar

[9]

J. D. KeyT. P. McDonough and V. C. Mavron, An upper bound for the minimum weight of the dual codes of desarguesian planes, Europ. J. Combin., 30 (2009), 220-229. doi: 10.1016/j.ejc.2008.01.003. Google Scholar

[10]

J. D. KeyT. P. McDonough and V. C. Mavron, Codes from Hall planes of even order, J. Geom., 105 (2014), 33-41. doi: 10.1007/s00022-013-0189-8. Google Scholar

[11]

H. Lüneburg, Translation Planes, Springer-Verlag, New York, 1980. Google Scholar

[12]

T. G. Ostrom, Finite Translation Planes, Springer-Verlag, 1970. Google Scholar

show all references

References:
[1] E. F. Assmus Jr and J. D. Key, Designs and Their Codes, Cambridge Univ. Press, Cambridge, 1992. doi: 10.1017/CBO9781316529836. Google Scholar
[2]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system Ⅰ: the user language, J. Symb. Comput., 24 (1997), 235-265. doi: 10.1006/jsco.1996.0125. Google Scholar

[3]

J. Cannon, A. Steel and G. White, Linear codes over finite fields, in Handbook of Magma Functions (eds. J. Cannon and W. Bosma), Computational Algebra Group, Dep. Math. , Univ. Sydney, 2006, V2. 13,3951-4023.Google Scholar

[4]

P. Dembowski, Finite geometries, in Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1968. Google Scholar

[5]

The GAP Group, GAP -Groups, Algorithms, and Programming, Version 4. 4. 12,2008, available at http://www.gap-system.org.Google Scholar

[6]

D. GhinelliM. J. de Resmini and J. D. Key, Minimum words of codes from affine planes, J. Geom., 91 (2008), 43-51. doi: 10.1007/s00022-008-2096-y. Google Scholar

[7]

D. R. Hughes and F. C. Piper, Projective Planes, Springer-Verlag, New York, 1973. Google Scholar

[8]

J. D. Key and M. J. de Resmini, Small sets of even type and codewords, J. Geom., 61 (1998), 83-104. doi: 10.1007/BF01237498. Google Scholar

[9]

J. D. KeyT. P. McDonough and V. C. Mavron, An upper bound for the minimum weight of the dual codes of desarguesian planes, Europ. J. Combin., 30 (2009), 220-229. doi: 10.1016/j.ejc.2008.01.003. Google Scholar

[10]

J. D. KeyT. P. McDonough and V. C. Mavron, Codes from Hall planes of even order, J. Geom., 105 (2014), 33-41. doi: 10.1007/s00022-013-0189-8. Google Scholar

[11]

H. Lüneburg, Translation Planes, Springer-Verlag, New York, 1980. Google Scholar

[12]

T. G. Ostrom, Finite Translation Planes, Springer-Verlag, 1970. Google Scholar

[1]

Mostafa Fazly, Nassif Ghoussoub. On the Hénon-Lane-Emden conjecture. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2513-2533. doi: 10.3934/dcds.2014.34.2513

[2]

Todd A. Drumm and William M. Goldman. Crooked planes. Electronic Research Announcements, 1995, 1: 10-17.

[3]

Cristina García Pillado, Santos González, Victor Markov, Consuelo Martínez, Alexandr Nechaev. New examples of non-abelian group codes. Advances in Mathematics of Communications, 2016, 10 (1) : 1-10. doi: 10.3934/amc.2016.10.1

[4]

Dubi Kelmer. Quantum ergodicity for products of hyperbolic planes. Journal of Modern Dynamics, 2008, 2 (2) : 287-313. doi: 10.3934/jmd.2008.2.287

[5]

Ivan Landjev. On blocking sets in projective Hjelmslev planes. Advances in Mathematics of Communications, 2007, 1 (1) : 65-81. doi: 10.3934/amc.2007.1.65

[6]

Osama Khalil. Geodesic planes in geometrically finite manifolds. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 881-903. doi: 10.3934/dcds.2019037

[7]

Olof Heden, Faina I. Solov’eva. Partitions of $\mathbb F$n into non-parallel Hamming codes. Advances in Mathematics of Communications, 2009, 3 (4) : 385-397. doi: 10.3934/amc.2009.3.385

[8]

Olof Heden, Denis S. Krotov. On the structure of non-full-rank perfect $q$-ary codes. Advances in Mathematics of Communications, 2011, 5 (2) : 149-156. doi: 10.3934/amc.2011.5.149

[9]

Yael Ben-Haim, Simon Litsyn. A new upper bound on the rate of non-binary codes. Advances in Mathematics of Communications, 2007, 1 (1) : 83-92. doi: 10.3934/amc.2007.1.83

[10]

Chris Johnson, Martin Schmoll. Pseudo-Anosov eigenfoliations on Panov planes. Electronic Research Announcements, 2014, 21: 89-108. doi: 10.3934/era.2014.21.89

[11]

Alex Eskin, Gregory Margulis and Shahar Mozes. On a quantitative version of the Oppenheim conjecture. Electronic Research Announcements, 1995, 1: 124-130.

[12]

Uri Shapira. On a generalization of Littlewood's conjecture. Journal of Modern Dynamics, 2009, 3 (3) : 457-477. doi: 10.3934/jmd.2009.3.457

[13]

Michael Hutchings, Frank Morgan, Manuel Ritore and Antonio Ros. Proof of the double bubble conjecture. Electronic Research Announcements, 2000, 6: 45-49.

[14]

Vitali Kapovitch, Anton Petrunin, Wilderich Tuschmann. On the torsion in the center conjecture. Electronic Research Announcements, 2018, 25: 27-35. doi: 10.3934/era.2018.25.004

[15]

G. A. Swarup. On the cut point conjecture. Electronic Research Announcements, 1996, 2: 98-100.

[16]

Janos Kollar. The Nash conjecture for threefolds. Electronic Research Announcements, 1998, 4: 63-73.

[17]

Roman Shvydkoy. Lectures on the Onsager conjecture. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 473-496. doi: 10.3934/dcdss.2010.3.473

[18]

Joel Hass, Michael Hutchings and Roger Schlafly. The double bubble conjecture. Electronic Research Announcements, 1995, 1: 98-102.

[19]

Daniele Bartoli, Leo Storme. On the functional codes arising from the intersections of algebraic hypersurfaces of small degree with a non-singular quadric. Advances in Mathematics of Communications, 2014, 8 (3) : 271-280. doi: 10.3934/amc.2014.8.271

[20]

Kamil Otal, Ferruh Özbudak. Explicit constructions of some non-Gabidulin linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 589-600. doi: 10.3934/amc.2016028

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (6)
  • HTML views (6)
  • Cited by (0)

Other articles
by authors

[Back to Top]