This paper investigates the generalized rank weights, with a definition implied by the study of the generalized rank weight enumerator. We study rank metric codes over $L$, where $L$ is a finite extension of a field $K$. This is a generalization of the case where $K=\mathbb{F}_q $ and $L={\mathbb{F}_{{q^m}}}$ of Gabidulin codes to arbitrary characteristic. We show equivalence to previous definitions, in particular the ones by Kurihara-Matsumoto-Uyematsu [
Citation: |
[1] | D. Augot, Generalization of Gabidulin codes over rational function fields, in MTNS-2014 21st Int. Syp. Math. Theory Netw. Syst. , 2014. |
[2] | D. Augot, P. Loidreau and G. Robert, Rank metric and Gabidulin codes in characteristic zero, in IEEE ISIT-2013 Int. Syp. Inf. Theory, 2013,509-513. doi: 10.1109/ISIT.2013.6620278. |
[3] | T. Berger, Isometries for rank distance and permutation group of Gabidulin codes, in Proc. 8th Int. Workshop Algebr. Combin. Coding Theory, 2002, 30-33. doi: 10.1109/TIT.2003.819322. |
[4] | T. Berger, Isometries for rank distance and permutation group of Gabidulin codes, IEEE Trans. Inform. Theory, 49 (2003), 3016-3019. doi: 10.1109/TIT.2003.819322. |
[5] | P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241. doi: 10.1016/0097-3165(78)90015-8. |
[6] | J. Ducoat, Generalized rank weights: a duality statement, in Topics in Finite Fields (eds. G. Kyureghyan, G. L. Mullen and A. Pott), AMS, 2015,101-109. doi: 10.1090/conm/632/12622. |
[7] | È. M. Gabidulin, Theory of codes with maximum rank distance, Probl. Pered. Inform., 21 (1985), 3-16. |
[8] | M. Giorgetti and A. Previtali, Galois invariance, trace codes and subfield subcodes, Finite Fields Appl., 16 (2010), 96-99. doi: 10.1016/j.ffa.2010.01.002. |
[9] | R. Jurrius and R. Pellikaan, Codes, arrangements and matroids, in Algebraic Geometry Modeling in Information Theory (ed. E. Martínez-Moro), World Scientific, New Jersey, 2013,219-325. doi: 10.1142/9789814335768_0006. |
[10] | R. Jurrius and R. Pellikaan, The extended and generalized rank weight enumerator, in Proc. ACA 2014 Appl. Comp. Algebra CACTC@ACA Comp. Algebra Coding Theory Crypt. , Fordham Univ. , New York, 2014. doi: 10.1145/2768577.2768605. |
[11] | G. Katsman and M. Tsfasman, Spectra of algebraic-geometric codes, Probl. Pered. Inform., 23 (1987), 19-34. |
[12] | J. Kurihara, R. Matsumoto and T. Uyematsu, New parameters of linear codes expressing security performance of universal secure network coding, in 50th Ann. Allerton Conf. Commun. Contr. Comp. , 2012,533-540. doi: 10.1109/Allerton.2012.6483264. |
[13] | J. Kurihara, R. Matsumoto and T. Uyematsu, Relative generalized rank weight of linear codes and its applications to network coding, IEEE Trans. Inform. Theory, 61 (2015), 3912-3936. doi: 10.1109/TIT.2015.2429713. |
[14] | S. Lang, Algebra, Addison-Wesley, Reading, 1965. |
[15] | U. Martínez-Peñas, On the Similarities Between Generalized Rank and Hamming Weights and Their Applications to Network Coding, IEEE Trans. Inform. Theory, 62 (2016), 4081-4095. doi: 10.1109/TIT.2016.2570238. |
[16] | F. Oggier and A. Sboui, On the existence of generalized rank weights, in IEEE ISIT-2012 Int. Symp. Inform. Theory, 2012,406-410. |
[17] | A. Ravagnani, Generalized weights: an anticode approach, J. Pure Appl. Algebra, 220 (2016), 1946-1962. doi: 10.1016/j.jpaa.2015.10.009. |
[18] | H. Stichtenoth, On the dimension of subfield subcodes, IEEE Trans. Inform. Theory, 36 (1990), 90-93. doi: 10.1109/18.50376. |