The Legendre sequence possesses several desirable features of pseudorandomness in view of different applications such as a high linear complexity (profile) for cryptography and a small (aperiodic) autocorrelation for radar, gps, or sonar. Here we prove the first nontrivial bound on its arithmetic autocorrelation, another figure of merit introduced by Mandelbaum for errorcorrecting codes.
| Citation: |
| [1] |
T. W. Cusick, C. Ding and A. Renvall, Stream Ciphers and Number Theory, Elsevier, Amsterdam, 2004.
|
| [2] |
C. Ding, Pattern distributions of Legendre sequences, IEEE Trans. Inform. Theory, 44 (1998), 1693-1698.
doi: 10.1109/18.681353.
|
| [3] |
C. Ding, T. Helleseth and W. Shan, On the linear complexity of Legendre sequences, IEEE Trans. Inform. Theory, 44 (1998), 1276-1278.
doi: 10.1109/18.669398.
|
| [4] |
M. Goresky and A. Klapper, Arithmetic crosscorrelations of feedback with carry shift register sequences, IEEE Trans. Inform. Theory, 43 (1997), 1342-1345.
doi: 10.1109/18.605605.
|
| [5] |
M. Goresky and A. Klapper, Some results on the arithmetic correlation of sequences, Sequences and Their Applications-SETA 2008, Springer, Berlin, 2008, 71-80.
|
| [6] |
M. Goresky and A. Klapper, Statistical properties of the arithmetic correlation of sequences, Int. J. Found. Comput. Sci., 22 (2011), 1297-1315.
doi: 10.1007/978-3-540-85912-3_7.
|
| [7] |
M. Goresky and A. Klapper, Algebraic Shift Register Sequences, Cambridge Univ. Press, Cambridge, 2012.
doi: 10.1142/S0129054111008726.
|
| [8] |
D. Mandelbaum, Arithmetic codes with large distance, IEEE Trans. Inform. Theory, 13 (1967), 237-242.
|
| [9] |
C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences. Ⅰ. Measure of pseudorandomness, the Legendre symbol, Acta Arith., 82 (1997), 365-377.
|
| [10] |
R. E. A. C. Paley, On orthogonal matrices, J. Math. Physics, 12 (1933), 311-320.
doi: 10.1002/sapm1933121311.
|
| [11] |
O. Perron, Bemerkungen über die Verteilung der quadratischen Reste, Math. Z., 56 (1952), 122-130.
doi: 10.1007/BF01175029.
|
| [12] |
I. Shparlinski, Cryptographic Applications of Analytic Number Theory. Complexity Lower Bounds and Pseudorandomness, in Progress in Computer Science and Applied Logic 22, Birkhäuser Verlag, Basel, 2003.
doi: 10.1007/978-3-0348-8037-4.
|
| [13] |
R. J. Turyn, The linear generation of Legendre sequence, J. Soc. Indust. Appl. Math., 12 (1964), 115-116.
doi: 10.1137/0112010.
|