
-
Previous Article
Certain sextics with many rational points
- AMC Home
- This Issue
-
Next Article
Rank equivalent and rank degenerate skew cyclic codes
Determining steady state behaviour of discrete monomial dynamical systems
Department of Mathematical Sciences, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico 00681-9018, USA |
In previous work [
References:
[1] |
D. Bollman, O. Colón-Reyes, V. Ocasio and E. Orozco,
A control theory for Boolean monomial dynamical systems, Discrete Event Dyn. Syst., 20 (2010), 19-35.
doi: 10.1007/s10626-009-0086-3. |
[2] |
D. Bollman, O. Colón-Reyes and E. Orozco, Fixed points in discrete models for regulatory genetic networks Eurasip J. Bioinform. Syst. Biol. 2007 (2007), Article ID 97356. |
[3] |
O. Colón-Reyes, A. Jarrah, R. Laubenbacher and B. Sturmfels,
Monomial dynamical systems over finite fields, J. Complex Syst., 16 (2006), 333-342.
|
[4] |
O. Colón-Reyes, R. Laubenbacher and B. Pareigis,
Boolean monomial dynamical systems, Ann. Combin., 8 (2004), 425-429.
doi: 10.1007/s00026-004-0230-6. |
[5] |
E. Delgado-Eckert,
An algebraic and graph theoretical framework to study monomial dynamical systems over a finite field, Complex Syst., 18 (2009), 308-328.
|
[6] |
E. V. Denardo,
Periods of connected networks and powers of nonnegative matrices, Math. Oper. Res., 2 (1977), 20-24.
doi: 10.1287/moor.2.1.20. |
[7] |
R. Hernández-Toledo,
Linear finite dynamical systems, Commun. Algebra, 33 (2005), 2977-2989.
doi: 10.1081/AGB-200066211. |
[8] |
G. Xu and Y. M. Zou,
Linear dynamical systems over finite rings, J. Algebra, 321 (2009), 2149-2155.
doi: 10.1016/j.jalgebra.2008.09.029. |
show all references
References:
[1] |
D. Bollman, O. Colón-Reyes, V. Ocasio and E. Orozco,
A control theory for Boolean monomial dynamical systems, Discrete Event Dyn. Syst., 20 (2010), 19-35.
doi: 10.1007/s10626-009-0086-3. |
[2] |
D. Bollman, O. Colón-Reyes and E. Orozco, Fixed points in discrete models for regulatory genetic networks Eurasip J. Bioinform. Syst. Biol. 2007 (2007), Article ID 97356. |
[3] |
O. Colón-Reyes, A. Jarrah, R. Laubenbacher and B. Sturmfels,
Monomial dynamical systems over finite fields, J. Complex Syst., 16 (2006), 333-342.
|
[4] |
O. Colón-Reyes, R. Laubenbacher and B. Pareigis,
Boolean monomial dynamical systems, Ann. Combin., 8 (2004), 425-429.
doi: 10.1007/s00026-004-0230-6. |
[5] |
E. Delgado-Eckert,
An algebraic and graph theoretical framework to study monomial dynamical systems over a finite field, Complex Syst., 18 (2009), 308-328.
|
[6] |
E. V. Denardo,
Periods of connected networks and powers of nonnegative matrices, Math. Oper. Res., 2 (1977), 20-24.
doi: 10.1287/moor.2.1.20. |
[7] |
R. Hernández-Toledo,
Linear finite dynamical systems, Commun. Algebra, 33 (2005), 2977-2989.
doi: 10.1081/AGB-200066211. |
[8] |
G. Xu and Y. M. Zou,
Linear dynamical systems over finite rings, J. Algebra, 321 (2009), 2149-2155.
doi: 10.1016/j.jalgebra.2008.09.029. |

[1] |
Igor E. Shparlinski. On some dynamical systems in finite fields and residue rings. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 901-917. doi: 10.3934/dcds.2007.17.901 |
[2] |
Mohammad Eslamian, Ahmad Kamandi. A novel algorithm for approximating common solution of a system of monotone inclusion problems and common fixed point problem. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021210 |
[3] |
Lih-Chung Wang, Tzer-jen Wei, Jian-Ming Shih, Yuh-Hua Hu, Chih-Cheng Hsieh. An algorithm for solving over-determined multivariate quadratic systems over finite fields. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022001 |
[4] |
Mădălina Roxana Buneci. Morphisms of discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 91-107. doi: 10.3934/dcds.2011.29.91 |
[5] |
Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063 |
[6] |
Timilehin Opeyemi Alakoya, Lateef Olakunle Jolaoso, Oluwatosin Temitope Mewomo. A self adaptive inertial algorithm for solving split variational inclusion and fixed point problems with applications. Journal of Industrial and Management Optimization, 2022, 18 (1) : 239-265. doi: 10.3934/jimo.2020152 |
[7] |
Abd-semii Oluwatosin-Enitan Owolabi, Timilehin Opeyemi Alakoya, Adeolu Taiwo, Oluwatosin Temitope Mewomo. A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 255-278. doi: 10.3934/naco.2021004 |
[8] |
Gianluca Crippa, Milton C. Lopes Filho, Evelyne Miot, Helena J. Nussenzveig Lopes. Flows of vector fields with point singularities and the vortex-wave system. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2405-2417. doi: 10.3934/dcds.2016.36.2405 |
[9] |
Daniele Bartoli, Adnen Sboui, Leo Storme. Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes. Advances in Mathematics of Communications, 2016, 10 (2) : 355-365. doi: 10.3934/amc.2016010 |
[10] |
Howard A. Levine, Yeon-Jung Seo, Marit Nilsen-Hamilton. A discrete dynamical system arising in molecular biology. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2091-2151. doi: 10.3934/dcdsb.2012.17.2091 |
[11] |
Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4665-4681. doi: 10.3934/dcds.2015.35.4665 |
[12] |
Karl P. Hadeler. Quiescent phases and stability in discrete time dynamical systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 129-152. doi: 10.3934/dcdsb.2015.20.129 |
[13] |
B. Coll, A. Gasull, R. Prohens. On a criterium of global attraction for discrete dynamical systems. Communications on Pure and Applied Analysis, 2006, 5 (3) : 537-550. doi: 10.3934/cpaa.2006.5.537 |
[14] |
Jean-Luc Chabert, Ai-Hua Fan, Youssef Fares. Minimal dynamical systems on a discrete valuation domain. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 777-795. doi: 10.3934/dcds.2009.25.777 |
[15] |
Paul L. Salceanu, H. L. Smith. Lyapunov exponents and persistence in discrete dynamical systems. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 187-203. doi: 10.3934/dcdsb.2009.12.187 |
[16] |
Mostafa Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont, Olivier Goubet. Discrete Schrödinger equations and dissipative dynamical systems. Communications on Pure and Applied Analysis, 2008, 7 (2) : 211-227. doi: 10.3934/cpaa.2008.7.211 |
[17] |
Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential trichotomy of dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2929-2962. doi: 10.3934/dcds.2014.34.2929 |
[18] |
Jacobo Pejsachowicz, Robert Skiba. Topology and homoclinic trajectories of discrete dynamical systems. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1077-1094. doi: 10.3934/dcdss.2013.6.1077 |
[19] |
Piotr Oprocha. Chain recurrence in multidimensional time discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1039-1056. doi: 10.3934/dcds.2008.20.1039 |
[20] |
Robert Skiba, Nils Waterstraat. The index bundle and multiparameter bifurcation for discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5603-5629. doi: 10.3934/dcds.2017243 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]