Permutations of finite fields have important applications in cryptography and coding theory. Involutions are permutations that are its own inverse and are of particular interest because the implementation used for coding can also be used for decoding. We present explicit formulas for all the involutions of ${\mathbb{ F\!}}_q$ that are given by monomials and for their fixed points.
Citation: |
C. Corrada
and I. Rubio
, Deterministic interleavers for Turbo codes with random-like performance and simple implementation, in Proc. 3rd Int. Symp. Turbo Codes Related Topics, (2003)
, 555-558.
![]() |
|
C. Corrada
and I. Rubio
, Cyclic decomposition of permutations of finite fields obtained using monomials, in Finite Fields and Applications, (2004)
, 254-261.
doi: 10.1007/978-3-540-24633-6_19.![]() ![]() ![]() |
|
P. Charpin
, S. Mesnager
and S. Sarkar
, On involutions of finite fields, in Int. Symp. Inf. Theory-ISIT, 80 (2016)
, 379-393.
![]() |
|
P. Charpin
, S. Mesnager
and S. Sarkar
, Involutions over the Galois field $\mathbb F_{2^n}$, IEEE Trans. Inf. Theory, 62 (2016)
, 2266-2276.
doi: 10.1109/TIT.2016.2526022.![]() ![]() ![]() |
|
A. Sakzad, D. Panario, M. Sadeghi and N. Eshghi, Self-inverse interleavers based on permutation functions for Turbo codes, in 2010 48th Ann. Allerton Conf. Commun. Control Comp., IEEE, 2010, 22–28.
![]() |
|
O. Takeshita
, On maximum contention-free interleavers and permutation polynomials over integer rings, IEEE Trans. Inf. Theory, 52 (2006)
, 1249-1253.
doi: 10.1109/TIT.2005.864450.![]() ![]() ![]() |
|
Q. Wang
, A note on inverses of cyclotomic mapping permutation polynomials over finite fields, Finite Fields Appl., 45 (2017)
, 422-427.
doi: 10.1016/j.ffa.2017.01.006.![]() ![]() ![]() |