In this paper, we firstly compute the dual functions of elementary symmetric bent functions. Next, we derive a new secondary construction of bent functions (given with their dual functions) involving symmetric bent functions, leading to a generalization of the well-know Rothaus' construction.
Citation: |
C. Carlet, Boolean functions for cryptography and error correcting codes, in Boolean Models and Methods in Mathematics, Computer Science, and Engineering (eds. Y. Crama and P. Hammer), Cambridge Univ. Press, 2010,257-397. doi: 10.1017/CBO9780511780448. | |
C. Carlet and S. Mesnager , Four decades of research on bent functions, Des. Codes Crypt., 78 (2016) , 5-50. doi: 10.1007/s10623-015-0145-8. | |
S. Mesnager, Bent Functions: Fundamentals and Results, Springer-Verlag, 2016. doi: 10.1007/978-3-319-32595-8. | |
O. S. Rothaus , On "bent" functions, J. Combin. Theory Ser. A, 20 (1976) , 300-305. | |
S. Mesnager and F. Zhang , On constructions of bent, semi-bent and five valued spectrum functions from old bent functions, Adv. Math. Commun., 11 (2017) , 339-345. |