May  2017, 11(2): 373-377. doi: 10.3934/amc.2017031

Fast algebraic immunity of Boolean functions

1. 

Department of Mathematics, University of Paris Ⅷ and Paris ⅩⅢ and Télécom ParisTech, LAGA, UMR 7539, CNRS, Sorbonne Paris Cité

2. 

Télécom ParisTech, department INFRES/MIC2, CNRS, UMR 5441

Received  February 2016 Revised  March 2016 Published  May 2017

Since 1970, Boolean functions have been the focus of a lot of attention in cryptography. An important topic in symmetric ciphers concerns the cryptographic properties of Boolean functions and constructions of Boolean functions with good cryptographic properties, that is, good resistance to known attacks. An important progress in cryptanalysis areas made in 2003 was the introduction by Courtois and Meier of algebraic attacks and fast algebraic attacks which are very powerful analysis concepts and can be applied to almost all cryptographic algorithms. To study the resistance against algebraic attacks, the notion of algebraic immunity has been introduced. In this paper, we use a parameter introduced by Liu and al., called fast algebraic immunity, as a tool to measure the resistance of a cryptosystem (involving Boolean functions) to fast algebraic attacks. We prove an upper bound on the fast algebraic immunity. Using our upper bound, we establish the weakness of trace inverse functions against fast algebraic attacks confirming a recent result of Feng and Gong.

Citation: Sihem Mesnager, Gérard Cohen. Fast algebraic immunity of Boolean functions. Advances in Mathematics of Communications, 2017, 11 (2) : 373-377. doi: 10.3934/amc.2017031
References:
[1]

C. Carlet, Boolean functions for cryptography and error correcting codes, in Boolean Models and Methods in Mathematics, Computer Science, and Engineering (eds. Y. Crama and P. L. Hammer), Cambridge Univ. Press, 2010,257-397. doi: 10.1017/CBO9780511780448.  Google Scholar

[2]

C. Carlet and K. Feng, An infinite class of balanced functions with optimal algebraic immunity, good immunity to fast algebraic attacks and good nonlinearity, in Adv. Crypt. -ASIACRYPT 2008, Springer, 2008,425-440. doi: 10.1007/978-3-540-89255-7_26.  Google Scholar

[3]

C. Carlet and D. Tang, Enhanced Boolean functions suitable for the filter model of pseudo-random generator, Des. Codes Crypt., 76 (2015), 571-587.  doi: 10.1007/s10623-014-9978-9.  Google Scholar

[4]

N. Courtois, Fast algebraic attacks on stream ciphers with linear feedback, Advances in Cryptology-CRYPTO 2003, Springer, 2003,177-194. doi: 10.1007/978-3-540-45146-4_11.  Google Scholar

[5]

N. Courtois and W. Meier, Algebraic attacks on stream ciphers with linear feedback, in Advances in Cryptology, Springer, 2002,346-359. doi: 10.1007/3-540-39200-9_21.  Google Scholar

[6]

Y. Du, F. Zhang and M. Liu, On the resistance of Boolean functions against fast algebraic attacks, in ICISC 2011, Springer, 2012,261-274. doi: 10.1007/978-3-642-31912-9_18.  Google Scholar

[7]

X. Feng and G. Gong, On algebraic immunity of trace inverse functions over finite fields with characteristic two, Cryptology ePrint Archive: Report 2013/585. Google Scholar

[8]

M. LiuD. Lin and D. Pei, Fast algebraic attacks and decomposition of symmetric Boolean functions, IEEE Trans. Inf. Theory, 57 (2011), 4817-4821.  doi: 10.1109/TIT.2011.2145690.  Google Scholar

[9]

W. Meier, E. Pasalic and C. Carlet, Algebraic attacks and decomposition of Boolean functions, in Eurocrypt 2004, Springer, 2004,474-491. doi: 10.1007/978-3-540-24676-3_28.  Google Scholar

[10]

Y. Nawaz, G. Gong and K. C. Gupta, Upper bounds on algebraic immunity of Boolean power functions, in 13th Int. Workshop Fast Softw. Encrypt., Springer, 2006,375-389. Google Scholar

[11]

K. Nyberg, Differentially uniform mappings for cryptography, in Eurocrypt 1993, Springer, 1994, 55-64. doi: 10.1007/3-540-48285-7_6.  Google Scholar

[12]

E. Pasalic, Almost fully optimized infinite classes of Boolean functions resistant to (fast) algebraic cryptanalysis, in ICISC 2008, Springer, 2008,399-414. doi: 10.1007/978-3-642-00730-9_25.  Google Scholar

[13]

C. Shannon, Communication theory of secrecy systems, Bell Syst. Techn. J., 28 (1949), 656-715.  doi: 10.1002/j.1538-7305.1949.tb00928.x.  Google Scholar

show all references

References:
[1]

C. Carlet, Boolean functions for cryptography and error correcting codes, in Boolean Models and Methods in Mathematics, Computer Science, and Engineering (eds. Y. Crama and P. L. Hammer), Cambridge Univ. Press, 2010,257-397. doi: 10.1017/CBO9780511780448.  Google Scholar

[2]

C. Carlet and K. Feng, An infinite class of balanced functions with optimal algebraic immunity, good immunity to fast algebraic attacks and good nonlinearity, in Adv. Crypt. -ASIACRYPT 2008, Springer, 2008,425-440. doi: 10.1007/978-3-540-89255-7_26.  Google Scholar

[3]

C. Carlet and D. Tang, Enhanced Boolean functions suitable for the filter model of pseudo-random generator, Des. Codes Crypt., 76 (2015), 571-587.  doi: 10.1007/s10623-014-9978-9.  Google Scholar

[4]

N. Courtois, Fast algebraic attacks on stream ciphers with linear feedback, Advances in Cryptology-CRYPTO 2003, Springer, 2003,177-194. doi: 10.1007/978-3-540-45146-4_11.  Google Scholar

[5]

N. Courtois and W. Meier, Algebraic attacks on stream ciphers with linear feedback, in Advances in Cryptology, Springer, 2002,346-359. doi: 10.1007/3-540-39200-9_21.  Google Scholar

[6]

Y. Du, F. Zhang and M. Liu, On the resistance of Boolean functions against fast algebraic attacks, in ICISC 2011, Springer, 2012,261-274. doi: 10.1007/978-3-642-31912-9_18.  Google Scholar

[7]

X. Feng and G. Gong, On algebraic immunity of trace inverse functions over finite fields with characteristic two, Cryptology ePrint Archive: Report 2013/585. Google Scholar

[8]

M. LiuD. Lin and D. Pei, Fast algebraic attacks and decomposition of symmetric Boolean functions, IEEE Trans. Inf. Theory, 57 (2011), 4817-4821.  doi: 10.1109/TIT.2011.2145690.  Google Scholar

[9]

W. Meier, E. Pasalic and C. Carlet, Algebraic attacks and decomposition of Boolean functions, in Eurocrypt 2004, Springer, 2004,474-491. doi: 10.1007/978-3-540-24676-3_28.  Google Scholar

[10]

Y. Nawaz, G. Gong and K. C. Gupta, Upper bounds on algebraic immunity of Boolean power functions, in 13th Int. Workshop Fast Softw. Encrypt., Springer, 2006,375-389. Google Scholar

[11]

K. Nyberg, Differentially uniform mappings for cryptography, in Eurocrypt 1993, Springer, 1994, 55-64. doi: 10.1007/3-540-48285-7_6.  Google Scholar

[12]

E. Pasalic, Almost fully optimized infinite classes of Boolean functions resistant to (fast) algebraic cryptanalysis, in ICISC 2008, Springer, 2008,399-414. doi: 10.1007/978-3-642-00730-9_25.  Google Scholar

[13]

C. Shannon, Communication theory of secrecy systems, Bell Syst. Techn. J., 28 (1949), 656-715.  doi: 10.1002/j.1538-7305.1949.tb00928.x.  Google Scholar

[1]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[2]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[3]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[4]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[5]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[6]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[7]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[8]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (56)
  • HTML views (63)
  • Cited by (1)

Other articles
by authors

[Back to Top]