In this article we describe how to find the parameters of subfield subcodes of extended Norm-Trace codes (ENT codes). With a Gröbner basis of the ideal of the $\mathbb{F}_{q^r}$ rational points of the extended Norm-Trace curve one can determine the dimension of the subfield subcodes or the dimension of the trace code. We also find a BCH-like bound from the minimum distance of the original code. The ENT codes we study here are a more general class of codes than those given in [
Citation: |
M. Bras-Amor´os and M. E. O'Sullivan, Extended norm-trace codes with optimized correction
capability, in Int. Symp. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes,
Springer, 2007,337-346.
doi: 10.1007/978-3-540-77224-8_39.![]() ![]() ![]() |
|
D. A. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms: An INTRODUCTION to Computational Algebraic Geometry and Commutative Algebra, Springer-Verlag, 2007.
doi: 10.1007/978-0-387-35651-8.![]() ![]() ![]() |
|
J. Fitzgerald
and R. F. Lax
, Decoding affine variety codes using Gröbner bases, DCC, 13 (1998)
, 147-158.
doi: 10.1023/A:1008274212057.![]() ![]() ![]() |
|
E. E. Gad, W. Huang, Y. Li and J. Bruck, Rewriting flash memories by message passing, 2016, US Patent App. 15/011,537.
![]() |
|
O. Geil
, On codes from norm-trace curves, Finite Fields Appl., 9 (2003)
, 351-371.
doi: 10.1016/S1071-5797(03)00010-8.![]() ![]() ![]() |
|
O. Geil, Evaluation codes from an affine variety code perspective, in Advances in Algebraic Geometry Codes, World Scientific, 2008.
doi: 10.1142/9789812794017_0004.![]() ![]() ![]() |
|
O. Geil
and T. Hoholdt
, Footprints or generalized bezout's theorem, IEEE Trans. Inf. Theory, 46 (2006)
, 635-641.
doi: 10.1109/18.825832.![]() ![]() ![]() |
|
M. Grassl,
Bounds on the minimum distance of linear codes and quantum codes available at http://www.codetables.de
![]() |
|
H. Janwa
and F. Piñero
, On the parameters of subfield subcodes of norm-trace codes, Congr. Numerant., 206 (2010)
, 99-113.
![]() ![]() |
|
R. Lidl and H. Niederreiter, Finite fields, in Encyclopaedia of Mathematics and Its Applications, Cambridge Univ. Press, 1997.
![]() |
|
F. L. Piñero
and H. Janwa
, On the subfield subcodes of Hermitian codes, Des. Codes Crypt., 70 (2014)
, 157-173.
doi: 10.1007/s10623-012-9736-9.![]() ![]() ![]() |
|
H. Stichtenoth
, On the dimension of subfield subcodes, IEEE Trans. Inf. Theory, 36 (1990)
, 90-93.
doi: 10.1109/18.50376.![]() ![]() ![]() |