\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On parameters of subfield subcodes of extended norm-trace codes

Abstract Full Text(HTML) Related Papers Cited by
  • In this article we describe how to find the parameters of subfield subcodes of extended Norm-Trace codes (ENT codes). With a Gröbner basis of the ideal of the $\mathbb{F}_{q^r}$ rational points of the extended Norm-Trace curve one can determine the dimension of the subfield subcodes or the dimension of the trace code. We also find a BCH-like bound from the minimum distance of the original code. The ENT codes we study here are a more general class of codes than those given in [1]. We study their subfield subcodes as well. We give an example of ENT subfield subcodes that have optimal parameters. Furthermore, we give examples of binary subfield subcodes of ENT codes of very large length for modern applications (e.g. for flash memories).

    Mathematics Subject Classification: Primary: 14G50, 11T71; Secondary: 13P10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   M. Bras-Amor´os and M. E. O'Sullivan, Extended norm-trace codes with optimized correction capability, in Int. Symp. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer, 2007,337-346. doi: 10.1007/978-3-540-77224-8_39.
      D. A. CoxJ. Little and  D. O'SheaIdeals, Varieties, and Algorithms: An INTRODUCTION to Computational Algebraic Geometry and Commutative Algebra, Springer-Verlag, 2007.  doi: 10.1007/978-0-387-35651-8.
      J. Fitzgerald  and  R. F. Lax , Decoding affine variety codes using Gröbner bases, DCC, 13 (1998) , 147-158.  doi: 10.1023/A:1008274212057.
      E. E. Gad, W. Huang, Y. Li and J. Bruck, Rewriting flash memories by message passing, 2016, US Patent App. 15/011,537.
      O. Geil , On codes from norm-trace curves, Finite Fields Appl., 9 (2003) , 351-371.  doi: 10.1016/S1071-5797(03)00010-8.
      O. Geil, Evaluation codes from an affine variety code perspective, in Advances in Algebraic Geometry Codes, World Scientific, 2008. doi: 10.1142/9789812794017_0004.
      O. Geil  and  T. Hoholdt , Footprints or generalized bezout's theorem, IEEE Trans. Inf. Theory, 46 (2006) , 635-641.  doi: 10.1109/18.825832.
      M. Grassl, Bounds on the minimum distance of linear codes and quantum codes available at http://www.codetables.de
      H. Janwa  and  F. Piñero , On the parameters of subfield subcodes of norm-trace codes, Congr. Numerant., 206 (2010) , 99-113. 
      R. Lidl and H. Niederreiter, Finite fields, in Encyclopaedia of Mathematics and Its Applications, Cambridge Univ. Press, 1997.
      F. L. Piñero  and  H. Janwa , On the subfield subcodes of Hermitian codes, Des. Codes Crypt., 70 (2014) , 157-173.  doi: 10.1007/s10623-012-9736-9.
      H. Stichtenoth , On the dimension of subfield subcodes, IEEE Trans. Inf. Theory, 36 (1990) , 90-93.  doi: 10.1109/18.50376.
  • 加载中
SHARE

Article Metrics

HTML views(349) PDF downloads(187) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return