August  2017, 11(3): 429-444. doi: 10.3934/amc.2017036

Complete characterization of the first descent point distribution for the k-error linear complexity of 2n-periodic binary sequences

1. 

Department of Computing, Curtin University, Perth, WA 6102, Australia

2. 

School of Computer Science, Anhui Univ. of Technology, Maanshan, Anhui 243032, China

Received  September 2014 Revised  August 2015 Published  August 2017

In this paper, a new constructive approach of determining the first descent point distribution for the $k$-error linear complexity of $2^n$-periodic binary sequences is developed using the sieve method and Games-Chan algorithm. First, the linear complexity for the sum of two sequences with the same linear complexity and minimum Hamming weight is completely characterized and this paves the way for the investigation of the $k$-error linear complexity. Second we derive a full representation of the first descent point spectrum for the $k$-error linear complexity. Finally, we obtain the complete counting functions on the number of $2^n$-periodic binary sequences with given $2^m$-error linear complexity and linear complexity $2^n-(2^{i_1}+2^{i_2}+···+2^{i_m})$, where $0≤ i_1<i_2<···<i_m<n. $ In summary, we depict a full picture on the first descent point of the $k$-error linear complexity for $2^n$-periodic binary sequences and this will help us construct some sequences with requirements on linear complexity and $k$-error complexity.

Citation: Jianqin Zhou, Wanquan Liu, Xifeng Wang. Complete characterization of the first descent point distribution for the k-error linear complexity of 2n-periodic binary sequences. Advances in Mathematics of Communications, 2017, 11 (3) : 429-444. doi: 10.3934/amc.2017036
References:
[1]

C. S. Ding, Lower bounds on the weight complexity of cascaded binary sequences, in Proc. Auscrypt'90 Adv. Crypt. , Springer-Verlag, 1990, 39–43. doi: 10.1007/BFb0030350.  Google Scholar

[2]

C. S. Ding, G. Z. Xiao and W. J. Shan, The Stability Theory of Stream Ciphers, SpringerVerlag, Berlin, 1991, 85–88. doi: 10.1007/3-540-54973-0.  Google Scholar

[3]

T. EtzionN. KalouptsidisN. KolokotronisK. Limniotis and K. G. Paterson, Properties of the error linear complexity spectrum, IEEE Trans. Inf. Theory, 55 (2009), 4681-4686.  doi: 10.1109/TIT.2009.2027495.  Google Scholar

[4]

F. Fu, H. Niederreiter and M. Su, The characterization of 2n-periodic binary sequences with fixed 1-error linear complexity, in SETA 2006 (eds. G. Gong et al), Springer, 2006, 88–103. doi: 10.1007/11863854_8.  Google Scholar

[5]

R. A. Games and A. H. Chan, A fast algorithm for determining the complexity of a binary sequence with period $2^n$, IEEE Trans. Inf. Theory, 29 (1983), 144-146.  doi: 10.1109/TIT.1983.1056619.  Google Scholar

[6]

Y. K. HanJ. H. Chung and K. Yang, On the $k$-error linear complexity of $p^m$-periodic binary sequences, IEEE Trans. Inf. Theory, 53 (2007), 2297-2304.  doi: 10.1109/TIT.2007.896863.  Google Scholar

[7]

T. KaidaS. Uehara and K. Imamura, An algorithm for the $k$-error linear complexity of sequences over GF($p^m$) with period $p^n$, $p$ a prime, Inf. Comput., 151 (1999), 134-147.  doi: 10.1006/inco.1998.2768.  Google Scholar

[8]

R. Kavuluru, Characterization of $2^n$-periodic binary sequences with fixed 2-error or 3-error linear complexity, Des. Codes Crypt., 53 (2009), 75-97.  doi: 10.1007/s10623-009-9295-x.  Google Scholar

[9]

N. KolokotronisP. Rizomiliotis and N. Kalouptsidis, Minimum linear span approximation of binary sequences, IEEE Trans. Inf. Theory, 48 (2002), 2758-2764.  doi: 10.1109/TIT.2002.802621.  Google Scholar

[10]

K. KurosawaF. SatoT. Sakata and W. Kishimoto, A relationship between linear complexity and $k$-error linear complexity, IEEE Trans. Inf. Theory, 46 (2000), 694-698.  doi: 10.1109/18.825845.  Google Scholar

[11]

A. Lauder and K. Paterson, Computing the error linear complexity spectrum of a binary sequence of period $2^n$, IEEE Trans. Inf. Theory, 49 (2003), 273-280.  doi: 10.1109/TIT.2002.806136.  Google Scholar

[12]

W. Meidl, How many bits have to be changed to decrease the linear complexity?, Des. Codes Crypt., 33 (2004), 109-122.  doi: 10.1023/B:DESI.0000035466.28660.e9.  Google Scholar

[13]

W. Meidl, On the stablity of $2^n$-periodic binary sequences, IEEE Trans. Inf. Theory, 51 (2005), 1151-1155.  doi: 10.1109/TIT.2004.842709.  Google Scholar

[14]

F. Pi and W. F. Qi, The 4-error linear complexity of $2^n$-periodic binary sequences with linear complexity $2^n-2^m-2^l$, ACTA Electr. Sin. (in Chinese), 39 (2011), 2914-2920.   Google Scholar

[15]

R. A. Rueppel, Analysis and Design of Stream Ciphers Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-82865-2.  Google Scholar

[16]

M. Stamp and C. F. Martin, An algorithm for the $k$-error linear complexity of binary sequences with period $2^n$, IEEE Trans. Inf. Theory, 39 (1993), 1398-1401.  doi: 10.1109/18.243455.  Google Scholar

[17]

G. Z. XiaoS. M. WeiK. Y. Lam and K. Imamura, A fast algorithm for determining the linear complexity of a sequence with period $p^n$ over $GF(q)$, IEEE Trans. Inf. Theory, 46 (2000), 2203-2206.  doi: 10.1109/18.868492.  Google Scholar

[18]

J. Q. Zhou, On the $k$-error linear complexity of sequences with period 2$p^n$ over GF(q), Des. Codes Crypt., 58 (2011), 279-296.  doi: 10.1007/s10623-010-9379-7.  Google Scholar

[19]

J. Q. Zhou and W. Q. Liu, The $k$-error linear complexity distribution for $2^n$-periodic binary sequences, Des. Codes Crypt., 73 (2014), 55-75.  doi: 10.1007/s10623-013-9805-8.  Google Scholar

[20]

J. Q. Zhou, J. Liu and W. Q. Liu, The 4-error linear complexity distribution for $2^n$-periodic binary sequences 2013, preprint, arXiv: 1310.0132 doi: 10.1007/s10623-013-9805-8.  Google Scholar

[21]

J. Q. Zhou, W. Q. Liu and G. L. Zhou, Cube theory and stable k-error linear complexity for periodic sequences, in Inscrypt 2013, Springer, 70–85. doi: 10.1007/978-3-319-12087-4_5.  Google Scholar

[22]

F. X. Zhu and W. F. Qi, The 2-error linear complexity of $2^n$-periodic binary sequences with linear complexity $2^n$-1, J. Electronics (China), 24 (2007), 390-395.  doi: 10.1007/s11767-006-0005-9.  Google Scholar

show all references

References:
[1]

C. S. Ding, Lower bounds on the weight complexity of cascaded binary sequences, in Proc. Auscrypt'90 Adv. Crypt. , Springer-Verlag, 1990, 39–43. doi: 10.1007/BFb0030350.  Google Scholar

[2]

C. S. Ding, G. Z. Xiao and W. J. Shan, The Stability Theory of Stream Ciphers, SpringerVerlag, Berlin, 1991, 85–88. doi: 10.1007/3-540-54973-0.  Google Scholar

[3]

T. EtzionN. KalouptsidisN. KolokotronisK. Limniotis and K. G. Paterson, Properties of the error linear complexity spectrum, IEEE Trans. Inf. Theory, 55 (2009), 4681-4686.  doi: 10.1109/TIT.2009.2027495.  Google Scholar

[4]

F. Fu, H. Niederreiter and M. Su, The characterization of 2n-periodic binary sequences with fixed 1-error linear complexity, in SETA 2006 (eds. G. Gong et al), Springer, 2006, 88–103. doi: 10.1007/11863854_8.  Google Scholar

[5]

R. A. Games and A. H. Chan, A fast algorithm for determining the complexity of a binary sequence with period $2^n$, IEEE Trans. Inf. Theory, 29 (1983), 144-146.  doi: 10.1109/TIT.1983.1056619.  Google Scholar

[6]

Y. K. HanJ. H. Chung and K. Yang, On the $k$-error linear complexity of $p^m$-periodic binary sequences, IEEE Trans. Inf. Theory, 53 (2007), 2297-2304.  doi: 10.1109/TIT.2007.896863.  Google Scholar

[7]

T. KaidaS. Uehara and K. Imamura, An algorithm for the $k$-error linear complexity of sequences over GF($p^m$) with period $p^n$, $p$ a prime, Inf. Comput., 151 (1999), 134-147.  doi: 10.1006/inco.1998.2768.  Google Scholar

[8]

R. Kavuluru, Characterization of $2^n$-periodic binary sequences with fixed 2-error or 3-error linear complexity, Des. Codes Crypt., 53 (2009), 75-97.  doi: 10.1007/s10623-009-9295-x.  Google Scholar

[9]

N. KolokotronisP. Rizomiliotis and N. Kalouptsidis, Minimum linear span approximation of binary sequences, IEEE Trans. Inf. Theory, 48 (2002), 2758-2764.  doi: 10.1109/TIT.2002.802621.  Google Scholar

[10]

K. KurosawaF. SatoT. Sakata and W. Kishimoto, A relationship between linear complexity and $k$-error linear complexity, IEEE Trans. Inf. Theory, 46 (2000), 694-698.  doi: 10.1109/18.825845.  Google Scholar

[11]

A. Lauder and K. Paterson, Computing the error linear complexity spectrum of a binary sequence of period $2^n$, IEEE Trans. Inf. Theory, 49 (2003), 273-280.  doi: 10.1109/TIT.2002.806136.  Google Scholar

[12]

W. Meidl, How many bits have to be changed to decrease the linear complexity?, Des. Codes Crypt., 33 (2004), 109-122.  doi: 10.1023/B:DESI.0000035466.28660.e9.  Google Scholar

[13]

W. Meidl, On the stablity of $2^n$-periodic binary sequences, IEEE Trans. Inf. Theory, 51 (2005), 1151-1155.  doi: 10.1109/TIT.2004.842709.  Google Scholar

[14]

F. Pi and W. F. Qi, The 4-error linear complexity of $2^n$-periodic binary sequences with linear complexity $2^n-2^m-2^l$, ACTA Electr. Sin. (in Chinese), 39 (2011), 2914-2920.   Google Scholar

[15]

R. A. Rueppel, Analysis and Design of Stream Ciphers Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-82865-2.  Google Scholar

[16]

M. Stamp and C. F. Martin, An algorithm for the $k$-error linear complexity of binary sequences with period $2^n$, IEEE Trans. Inf. Theory, 39 (1993), 1398-1401.  doi: 10.1109/18.243455.  Google Scholar

[17]

G. Z. XiaoS. M. WeiK. Y. Lam and K. Imamura, A fast algorithm for determining the linear complexity of a sequence with period $p^n$ over $GF(q)$, IEEE Trans. Inf. Theory, 46 (2000), 2203-2206.  doi: 10.1109/18.868492.  Google Scholar

[18]

J. Q. Zhou, On the $k$-error linear complexity of sequences with period 2$p^n$ over GF(q), Des. Codes Crypt., 58 (2011), 279-296.  doi: 10.1007/s10623-010-9379-7.  Google Scholar

[19]

J. Q. Zhou and W. Q. Liu, The $k$-error linear complexity distribution for $2^n$-periodic binary sequences, Des. Codes Crypt., 73 (2014), 55-75.  doi: 10.1007/s10623-013-9805-8.  Google Scholar

[20]

J. Q. Zhou, J. Liu and W. Q. Liu, The 4-error linear complexity distribution for $2^n$-periodic binary sequences 2013, preprint, arXiv: 1310.0132 doi: 10.1007/s10623-013-9805-8.  Google Scholar

[21]

J. Q. Zhou, W. Q. Liu and G. L. Zhou, Cube theory and stable k-error linear complexity for periodic sequences, in Inscrypt 2013, Springer, 70–85. doi: 10.1007/978-3-319-12087-4_5.  Google Scholar

[22]

F. X. Zhu and W. F. Qi, The 2-error linear complexity of $2^n$-periodic binary sequences with linear complexity $2^n$-1, J. Electronics (China), 24 (2007), 390-395.  doi: 10.1007/s11767-006-0005-9.  Google Scholar

[1]

Jianqin Zhou, Wanquan Liu, Xifeng Wang. Structure analysis on the k-error linear complexity for 2n-periodic binary sequences. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1743-1757. doi: 10.3934/jimo.2017016

[2]

Zhixiong Chen, Vladimir Edemskiy, Pinhui Ke, Chenhuang Wu. On $k$-error linear complexity of pseudorandom binary sequences derived from Euler quotients. Advances in Mathematics of Communications, 2018, 12 (4) : 805-816. doi: 10.3934/amc.2018047

[3]

Alina Ostafe, Igor E. Shparlinski, Arne Winterhof. On the generalized joint linear complexity profile of a class of nonlinear pseudorandom multisequences. Advances in Mathematics of Communications, 2010, 4 (3) : 369-379. doi: 10.3934/amc.2010.4.369

[4]

Liqin Hu, Qin Yue, Fengmei Liu. Linear complexity of cyclotomic sequences of order six and BCH codes over GF(3). Advances in Mathematics of Communications, 2014, 8 (3) : 297-312. doi: 10.3934/amc.2014.8.297

[5]

Siqi Li, Weiyi Qian. Analysis of complexity of primal-dual interior-point algorithms based on a new kernel function for linear optimization. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 37-46. doi: 10.3934/naco.2015.5.37

[6]

Stefano Galatolo. Orbit complexity and data compression. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 477-486. doi: 10.3934/dcds.2001.7.477

[7]

Valentin Afraimovich, Lev Glebsky, Rosendo Vazquez. Measures related to metric complexity. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1299-1309. doi: 10.3934/dcds.2010.28.1299

[8]

Giuseppe Bianchi, Lorenzo Bracciale, Keren Censor-Hillel, Andrea Lincoln, Muriel Médard. The one-out-of-k retrieval problem and linear network coding. Advances in Mathematics of Communications, 2016, 10 (1) : 95-112. doi: 10.3934/amc.2016.10.95

[9]

Idan Goldenberg, David Burshtein. Error bounds for repeat-accumulate codes decoded via linear programming. Advances in Mathematics of Communications, 2011, 5 (4) : 555-570. doi: 10.3934/amc.2011.5.555

[10]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

[11]

Valentin Afraimovich, Maurice Courbage, Lev Glebsky. Directional complexity and entropy for lift mappings. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3385-3401. doi: 10.3934/dcdsb.2015.20.3385

[12]

Roland Zweimüller. Asymptotic orbit complexity of infinite measure preserving transformations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 353-366. doi: 10.3934/dcds.2006.15.353

[13]

Erik M. Bollt, Joseph D. Skufca, Stephen J . McGregor. Control entropy: A complexity measure for nonstationary signals. Mathematical Biosciences & Engineering, 2009, 6 (1) : 1-25. doi: 10.3934/mbe.2009.6.1

[14]

Easton Li Xu, Weiping Shang, Guangyue Han. Network encoding complexity: Exact values, bounds, and inequalities. Advances in Mathematics of Communications, 2017, 11 (3) : 567-594. doi: 10.3934/amc.2017044

[15]

Valentin Afraimovich, Lev Glebsky. Measures related to $(\epsilon,n)$-complexity functions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 23-34. doi: 10.3934/dcds.2008.22.23

[16]

Jiarong Peng, Xiangyong Zeng, Zhimin Sun. Finite length sequences with large nonlinear complexity. Advances in Mathematics of Communications, 2018, 12 (1) : 215-230. doi: 10.3934/amc.2018015

[17]

Enrico Capobianco. Born to be big: Data, graphs, and their entangled complexity. Big Data & Information Analytics, 2016, 1 (2&3) : 163-169. doi: 10.3934/bdia.2016002

[18]

Stefano Galatolo. Global and local complexity in weakly chaotic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1607-1624. doi: 10.3934/dcds.2003.9.1607

[19]

Andrew Klapper. The asymptotic behavior of N-adic complexity. Advances in Mathematics of Communications, 2007, 1 (3) : 307-319. doi: 10.3934/amc.2007.1.307

[20]

Domingo Gómez-Pérez, László Mérai. Algebraic dependence in generating functions and expansion complexity. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020022

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (14)
  • HTML views (9)
  • Cited by (0)

Other articles
by authors

[Back to Top]