• Previous Article
    Computing elliptic curve discrete logarithms with improved baby-step giant-step algorithm
  • AMC Home
  • This Issue
  • Next Article
    Complete characterization of the first descent point distribution for the k-error linear complexity of 2n-periodic binary sequences
August  2017, 11(3): 445-452. doi: 10.3934/amc.2017037

Integer-valued Alexis sequences with large zero correlation zone

Department of Electronic Engineering, Southern Taiwan University of Science and Technology, No. 1, Nan-Tai Street, Yungkang Dist., Tainan City 710, Taiwan

Received  January 2015 Revised  February 2016 Published  August 2017

In this paper, a new class of integer-valued Alexis sequences with length N = 2 (mod 4) is proposed and constructed by using integer-valued almost-perfect sequences obtained from three integer-valued elementary sequences. Compared with binary Alexis sequences, the proposed integer-valued Alexis sequences have a larger zero correlation zone (ZCZ). In addition, the maximal energy efficiency of the proposed sequences is investigated.

Citation: Wei-Wen Hu. Integer-valued Alexis sequences with large zero correlation zone. Advances in Mathematics of Communications, 2017, 11 (3) : 445-452. doi: 10.3934/amc.2017037
References:
[1]

R. Alexis, Search for sequences with autocorrelation, Proc. Int. Coll. Coding Theory Appl., 49 (1986), 159-172.  doi: 10.1007/3-540-19368-5_18.  Google Scholar

[2]

M. Antweiler, Perfect energy efficient sequences, IET Electr. Lett., 27 (2002), 1332-1334.   Google Scholar

[3]

F. HuP. Z. FanM. Darnell and F. Jin, Binary sequences with good aperiodic autocorrelation functions obtained by neural network search, IET Electr. Lett., 33 (1997), 688-690.   Google Scholar

[4]

J.-W. JangY.-S. Kim and S.-H. Kim, New design of quaternary LCZ and ZCZ sequence set from binary LCZ and ZCZ sequence set, Adv. Math. Commun., 3 (2009), 115-124.  doi: 10.3934/amc.2009.3.115.  Google Scholar

[5]

H. D. Luke, Binary Alexis sequences with perfect correlation, IEEE Trans. Commu., 49 (2001), 966-968.   Google Scholar

[6]

H. D. LukeD. Schotten and H. Hadinejad-Mahram, Binary and quadriphase sequences with optimal autocorrelation properties: A survey, IEEE Trans. Inf. Theory, 49 (2003), 3271-3282.  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[7]

Z. Yang and P. H. Ke, Quaternary sequences with odd period and low autocorrelation, Electr. Lett., 46 (2010), 1068-1069.   Google Scholar

show all references

References:
[1]

R. Alexis, Search for sequences with autocorrelation, Proc. Int. Coll. Coding Theory Appl., 49 (1986), 159-172.  doi: 10.1007/3-540-19368-5_18.  Google Scholar

[2]

M. Antweiler, Perfect energy efficient sequences, IET Electr. Lett., 27 (2002), 1332-1334.   Google Scholar

[3]

F. HuP. Z. FanM. Darnell and F. Jin, Binary sequences with good aperiodic autocorrelation functions obtained by neural network search, IET Electr. Lett., 33 (1997), 688-690.   Google Scholar

[4]

J.-W. JangY.-S. Kim and S.-H. Kim, New design of quaternary LCZ and ZCZ sequence set from binary LCZ and ZCZ sequence set, Adv. Math. Commun., 3 (2009), 115-124.  doi: 10.3934/amc.2009.3.115.  Google Scholar

[5]

H. D. Luke, Binary Alexis sequences with perfect correlation, IEEE Trans. Commu., 49 (2001), 966-968.   Google Scholar

[6]

H. D. LukeD. Schotten and H. Hadinejad-Mahram, Binary and quadriphase sequences with optimal autocorrelation properties: A survey, IEEE Trans. Inf. Theory, 49 (2003), 3271-3282.  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[7]

Z. Yang and P. H. Ke, Quaternary sequences with odd period and low autocorrelation, Electr. Lett., 46 (2010), 1068-1069.   Google Scholar

Table 1.  Comparisons of ZCZ between binary and proposed sequences
$N_a$ binary Alexis sequences [1] integer-valued Alexis sequences
10 4 5
14 5 6
18 7 8
22 8 10
26 8 12
30 unknown 14
$N_a$ binary Alexis sequences [1] integer-valued Alexis sequences
10 4 5
14 5 6
18 7 8
22 8 10
26 8 12
30 unknown 14
[1]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[2]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[3]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[4]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[5]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[6]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[7]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[8]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[9]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[10]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[11]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[12]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[13]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[14]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[17]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[18]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[19]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021018

[20]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (100)
  • HTML views (56)
  • Cited by (0)

Other articles
by authors

[Back to Top]