Advanced Search
Article Contents
Article Contents

# The weight distributions of constacyclic codes

The paper was supported by National Natural Science Foundation of China under Grants 11601475,61772015 and Foundation of Science and Technology on Information Assurance Laboratory under Grants KJ-15-009,6142112010202.
• Let $\Bbb F_q$ be a finite field with $q$ elements. Suppose that $a, λ∈ \Bbb F_q^*$, $a^n=λ$ with $n|(q-1)$. In this paper, we determine the weight distribution of a class of $λ$-constacyclic codes of length $nm$ with the parity check polynomial $h(x)=(x^m-aξ^{st})(x^m-aξ^{s(t+1)})...(x^m-aξ^{s(t+r-1)})$ and $n>(r-1)m$, where $s,t, r$ are positive integers and $ξ∈ \Bbb F_q$ is a primitive n-th root of unity. Moreover, we give the weight distributions of $λ$-constacyclic codes of length $nm$ explicitly in several cases: (1) $r=1$, $n>1$; (2) $r=2$, $m=2$ and $n>2$; (3) $r=2$, $m=3$ and $n>3$; (4) $r=3$, $m=2$ and $n>4$.

Mathematics Subject Classification: Primary: 94B05, 11T71; Secondary: 11C08, 11C20.

 Citation:

• Table 1.  Weight distribution

 Weight Frequency 0 1 $n-1$ $2n(q-1)$ $n$ $2(q-1)(q+1-n)$ $2n-2$ $n^2(q-1)^2$ $2n-1$ $2n(q-1)^2(q+1-n)$ $2n$ $(q-1)^2(q+1-n)^2$

Table 2.  Weight distribution

 Weight Frequency 0 1 $n-1$ $3n(q-1)$ $n$ $3(q-1)(q+1-n)$ $2n-2$ $3n^2(q-1)^2$ $2n-1$ $6n(q-1)^2(q+1-n)$ $2n$ $3(q-1)^2(q+1-n)^2$ $3n-3$ $n^3(q-1)^3$ $3n-2$ $3n^2(q-1)^3(q+1-n)$ $3n-1$ $3n(q-1)^3(q+1-n)^2$ $3n$ $(q-1)^3(q+1-n)^3$

Table 3.  Weight distribution

 Weight Frequency 0 1 $n-2$ $n(n-1)(q-1)$ $n-1$ $2n(q-1)(q-n+2)$ $n$ $2(q-1)^3-2(n-3)(q-1)^2+(n-2)(n-3)(q-1)$ $2n-4$ $\frac {n^2(n-1)^2}4 (q-1)^2$ $2n-3$ $n^2(q-1)^2(n-1)(q-n+2)$ $2n-2$ $n^2(q-1)^2(q-n+2)^2+n(n-1)(q-1)^2[(q-1)^2-(n-3)(q-1)+C_{n-2}^2]$ $2n-1$ $2n(q-n+2)(q-1)^4-2n(n-3)(q-n+2)(q-1)^3$ $+n(n-2)(n-3)(q-n+2)(q-1)^2$ $2n$ $(q-1)^6+(n-3)^2(q-1)^4+\frac {(n-2)^2(n-3)^2}4 (q-1)^2+(n-2)(n-3)(q-1)^4$ $-2(n-3)(q-1)^5-(n-2)(n-3)^2(q-1)^3$
•  [1] N. Boston and G. McGuire, The weight distribution of cyclic codes with two zeros and zeta functions, J. Symb. Comput., 45 (2010), 723-733.  doi: 10.1016/j.jsc.2010.03.007. [2] P. Charpin, Cyclic codes with few weights and Niho exponents, J. Combin. Theory Ser. A, 108 (2004), 247-259.  doi: 10.1016/j.jcta.2004.07.001. [3] B. Chen, H. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $\ell p^s$ and their duals, Discr. Appl. Math., 177 (2014), 60-70.  doi: 10.1016/j.disc.2013.01.024. [4] B. Chen, H. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $2\ell^mp^n$, Finite Fields Appl., 33 (2015), 137-159.  doi: 10.1016/j.ffa.2014.11.006. [5] B. Chen, Y. Fan, L. Lin and H. Liu, Constacyclic codes over finite fields, Finite Fields Appl., 18 (2012), 1217-1231. [6] C. Ding, The weight distributions of some irreducible cyclic codes, IEEE Trans. Inf. Theory, 55 (2009), 955-960.  doi: 10.1109/TIT.2008.2011511. [7] C. Ding, Y. Liu, C. Ma and L. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 57 (2011), 8000-8006.  doi: 10.1109/TIT.2011.2165314. [8] C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discr. Math., 313 (2013), 434-446.  doi: 10.1016/j.disc.2012.11.009. [9] H. Q. Dinh, On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions, Finite Fields Appl., 14 (2008), 22-40.  doi: 10.1016/j.ffa.2007.07.001. [10] H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Appl., 18 (2012), 133-143.  doi: 10.1016/j.ffa.2011.07.003. [11] H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals, Discr. Math., 313 (2013), 983-991.  doi: 10.1016/j.disc.2013.01.024. [12] C. Li and Q. Yue, Weight distribution of two classes of cyclic codes with respect to two distinct order elements, IEEE Trans. Inf. Theory, 60 (2014), 296-303.  doi: 10.1109/TIT.2013.2287211. [13] C. Li, Q. Yue and F. Li, Hamming weights of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 60 (2014), 3895-3902.  doi: 10.1109/TIT.2014.2317785. [14] C. Li, Q. Yue and F. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114.  doi: 10.1016/j.ffa.2014.01.009. [15] C. Li, X. Zeng and L. Hu, A class of binary cyclic codes with five weights}, Sci. China Math., 53 (2010), 3279-3286.  doi: 10.1007/s11425-010-4062-z. [16] R. Lidl and H. Niederreiter, Finite Fields Cambridge Univ. Press, Cambridge, 2008. [17] J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.  doi: 10.1109/TIT.2008.2006424. [18] J. Luo, Y. Tang and H. Wang, Cyclic codes and sequences: the generalized Kasami case, IEEE Trans. Inf. Theory, 56 (2010), 2130-2142.  doi: 10.1109/TIT.2010.2043783. [19] C. Ma, L. Zeng, Y. Liu, D. Feng and C. Ding, The weight enumerator of a class of cyclic codes, IEEE Trans. Inf. Theory, 57 (2011), 397-402.  doi: 10.1109/TIT.2010.2090272. [20] G. McGuire, On three weights in cyclic codes with two zeros, Finite Fields Appl., 10 (2004), 97-104.  doi: 10.1016/S1071-5797(03)00045-5. [21] G. Vega, The weight distribution of an extended class of reducible cyclic codes, IEEE Trans. Inf. Theory, 58 (2012), 4862-4869.  doi: 10.1109/TIT.2012.2193376. [22] B. Wang, C. Tang, Y. Qi, Y. Yang and M. Xu, The weight distributions of cyclic codes and elliptic curves, IEEE Trans. Inf. Theory, 58 (2012), 7253-7259.  doi: 10.1109/TIT.2012.2210386. [23] X. Wang, D. Zheng, L. Hu and X. Zeng, The weight distributions of two classes of binary cyclic codes, Finite Fields Appl., 34 (2015), 192-207.  doi: 10.1016/j.ffa.2015.01.012. [24] J. Wolfmann, Weight distributions of some binary primitive cyclic codes, IEEE Trans. Inf. Theory, 40 (2004), 2068-2071.  doi: 10.1109/18.340482. [25] M. Xiong, The weight distributions of a class of cyclic codes, Finite Fields Appl., 18 (2012), 933-945.  doi: 10.1016/j.ffa.2012.06.001. [26] J. Yang, M. Xiong and C. Ding, Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inf. Theory, 59 (2013), 5985-5993.  doi: 10.1109/TIT.2013.2266731. [27] J. Yuan, C. Carlet and C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions, IEEE Trans. Inf. Theory, 52 (2006), 712-717.  doi: 10.1109/TIT.2005.862125. [28] X. Zeng, L. Hu, W. Jiang, Q. Yue and X. Cao, The weight distribution of a class of p-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.  doi: 10.1016/j.ffa.2012.06.001. [29] Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.  doi: 10.1016/j.ffa.2013.08.005. [30] Z. Zhou, C. Ding, J. Luo and A. Zhang, A family of five-weight cyclic codes and their weight enumerators, IEEE Trans. Inf. Theory, 59 (2013), 6674-6682.  doi: 10.1109/TIT.2013.2267722. [31] D. Zheng, X. Wang, L. Hu and X. Zeng, The weight distributions of two classes of p-ary cyclic codes, Finite Fields Appl., 29 (2014), 202-224.  doi: 10.1016/j.ffa.2014.05.001. [32] D. Zheng, X. Wang, X. Zeng and L. Hu, The weight distributions of a family of p-ary cyclic codes, Des. Codes Crypt., 75 (2015), 263-275.  doi: 10.1007/s10623-013-9908-2. [33] X. Zhu, Q. Yue and L. Hu, Weight distribution of cyclic codes of length $tl^m$, Discr. Math., 338 (2015), 844-856.

Tables(3)

## Article Metrics

HTML views(431) PDF downloads(293) Cited by(0)

## Other Articles By Authors

• on this site
• on Google Scholar

### Catalog

/

DownLoad:  Full-Size Img  PowerPoint